Part IX – September 1968 - Papers - Precipitation Phenomena in Binary Zinc-Aluminum Alloys: Heterogeneous Precipitation at Dislocations

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 594 KB
- Publication Date:
- Jan 1, 1969
Abstract
The precipitation behavior of Zn-0.5 pct A1 alloy single crystals was studied by means of electrical resistivity measurements and by optical and electron microscopy. The single crystals for the resistivity measurements were prepared by an original method in - 100-p -thick sheets. The order of the precipitation kinetics ranged between 1 and 1.5. The dislocations play a relevant role in the first-order kinetics. Precipitation always occurs both on dispersed particles and on dislocations. Statistical examinations have shown that the first-order kinetics can have two different activation energies; i.e., the precipitation can have dz;fferent mechanisnrs which could not be identified, however, in the course of the research. During the tnetallographic exanzination of the precipitation structures a specific process of dislocation decoration was obsereed. The main purpose of this work was to study the contribution of dislocations to the precipitation. A number of authors have observed precipitation on dislocations and reference might be made to several monographs on the ubject.'' The possibility that dislocations also accelerate precipitation has been considered by Turn-bull3 and Fischer et al.4 The studies described in the present paper were carried out on zinc, chosen as a base metal owing to the ease with which dislocations can be introduced into it and because of the absence of excess vacancies after quenching in conditions where phenomena of accelerated precipitation still occur. Aluminum was preferred as alloying element because of the accelerated precipitation phenomena that resulted in a preliminary reearch. EXPERIMENTAL METHODS The observations refer to a Zn-0.5 pct A1 alloy. The zinc was 99.995 pct pure; a typical spectroscopical analysis is given in Table I. As a rule the alloy was subjected to homogenization, quenching, or slow cooling and annealing. Homogenization was carried out by heating at 390" to 410°C for 24 hr. From the homogenization temperature, some specimens were quenched and some slowly cooled at a rate of 2°C per sec. At this rate no precipitate was detectable under the optical microscope just after cooling. Quenching was carried out simply by dropping the specimens into water, aqueous ethylene glycol solution at -30" c, or liquid-nitrogen baths placed close to the homogenization oven. Vaseline oil baths were used with a thermal stabilization of 10-20 for both the aging treatments and the measurements; aging was generally carried out at 90" or 130°C. To avoid oxidation phenomena during heating, the vaseline oil baths had to be frequently renewed. The precipitation kinetics were studied by means of electrical resistivity measurements, using ans potentiometric method (reproducibility ± 5 x 10 5 v, that is 0.5 pct of the total voltage decreases on the specimens during precipitation). First, various types of specimens were tested, i.e., polycrystals, single crystals grown in capillary quartz tubes, and thin single-crystal sheets prepared by means of an original method requiring no container except for the natural oxide. Even if fully annealed, the polycrystals and the capillary grown single crystals showed resistivity in -creases, most probably due to dislocations introduced in the course of the measurements. Similar resistivity increases in pure zinc were noticed by another author. Only the single-crystal sheets showed no resistivity change; thus they were chosen for the subsequent tests. As already mentioned, these single crystals were obtained by using, as a container, the natural oxide on the zinc surface; the oxide strength is sufficient to maintain the original shape during melting with sheets up to 500 p thick. An initial zone melting and subsequent zone leveling, which led also to formation of the single crystals, were thus carried out on rolled sheets of the required thicknesses (- 100 p) and shape, lying on a flat silica surface. The resistivities were first evaluated by measurements at the liquid-nitrogen temperature. This method gave poor reproducibility, however, and this was attributed to the thermal cycles which had to be operated. To avoid cycles and handling, it was therefore decided to make measurements directly in the annealing oil baths; this required thermal stabilization at ilo-' "C. In this way only the resistance changes were measured. Specimens of pure zinc and of completely annealed alloy were always examined as controls together with those under consideration; only those measurement runs were taken into account where the reference samples showed no resistance increases. Again, the main inconvenience was due to oxidation and this was avoided by renewing the oil baths; even so data reproducibility was poor and the observations were therefore carried out on a large number (many hundreds) of specimens so as to provide indications of statistical value. For the transmission observations under the elec-
Citation
APA:
(1969) Part IX – September 1968 - Papers - Precipitation Phenomena in Binary Zinc-Aluminum Alloys: Heterogeneous Precipitation at DislocationsMLA: Part IX – September 1968 - Papers - Precipitation Phenomena in Binary Zinc-Aluminum Alloys: Heterogeneous Precipitation at Dislocations. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.