Part IX – September 1968 - Papers - Some Observations on the Ductile Fracture of PoIycrystaIIine Copper Containing Inclusions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 659 KB
- Publication Date:
- Jan 1, 1969
Abstract
Investigation of the initiation and propagation of ductile failure in OFHC copper was undertaken to determine the role of nonmetallic inclusions. The effect of inclusion initiated voids on the formation of the internal cavity and the final shear separation was studied by metallographic eranzination of strained test pieces. A strain anneal technique was used to enlarge the voids under uniaxial stress conditions to elinzinate triaxial stress effects. Measurements of void size us stress and strain were made to show the point at which void im'tiation begins and becomes an important factor in the deformation process. The work of separation of copper-cuprous oxide was determined to attempt to correlate the breakdown of the matrix inclusion interface with void initiation and propagation. The zloid shape and position relative to the tensile axis suggested an interface breakdown mechanisnz of initiation. Evidence is presented that shows a basic similarity between the central cavity propagation and the 45-deg shear portions of the failure. DUCTILE fracture has been studied by a number of workers1-lo and attention drawn to the importance of hard second phase particles in the initiation of the failure. Holes formed at the matrix-particle interface can elongate by plastic deformation and then subsequently expand sideways to link up and produce a major crack. This is usually observed first in the center of the macroscopically necked region of a test-piece where the hydrostatic stresses are at a maximum. As the crack spreads sideways towards the free surface of the specimen, well defined shear zones develop from the crack tip and the final separation is along a direction at approximately 45 deg to the stress axis. This shear failure may also be associated with voids formed adjacent to second phase particles. In this way a cup and cone type fracture is produced. The stage at which separation takes place between particles and the surrounding matrix has not been clearly identified. In addition, although researchers have dealt with anisotropy of tensile behavior" as a result of material fabrication variables, not much is known about the microstructural features of aniso-tropic behavior. In the present work evidence on these points is presented in relation to the behavior of copper containing second phase particles of cuprous oxide. I. MATERIALS AND PROCEDURES EMPLOYED The material used was +-in. diam or 2-in. sq cold-drawn OFHC copper bar which contained 0.6 pct by volume of cuprous oxide inclusions. These ranged in COLIN BAKER, Junior Member AIME, formerly at -mnF of Metallurgy, University of Cambridge, Cambridge, England, is presently Research Scientist Reynolds Metals Co., Richrnand, Va. G. C. SMITH, Member AIME, is Senior Lecturer, Department of Metallurgy, University of Cambridge. Manuscript submitted June 20, 1967. IMD size from approximately 1 to 6 p in length and 1 to 4 p in width. The shape was generally slightly ovoid. Tensile tests were made on specimens having a gage length of 2.5 cm and diameter of 0.643 cm. Metallographic examination was carried out by sectioning deformed and fractured specimens; in addition fracture surfaces were examined optically and with a scanning electron microscope. Some measurements of the work of separation between copper and cuprous oxide were made, using a sessile drop technique which was a modification of that used by Kingery and umenick." The best metallographic results were obtained by using a vibratory polisher, which minimized smearing of the surface. 11. RESULTS A) Initial Experiments. Specimens from the +-in. diam rod were annealed for 2 hr at 650°C in uacuo, at which temperature complete recrystallization occurred without any change in the form of the inclusion. They were then fractured at temperatures from -190" to 600°C. Cup and cone fractures were obtained at all temperatures from -196" to 400°C. With increase in temperature there was, however, a continuous increase in the extent of the central transverse area and a corresponding decrease in the shear portion of the fracture. Above 400°C, the fractures became intergranular. Sections of specimens tested below 400°C revealed extensive small voids which were always associated with inclusions. However, the voids only reached dimensions greater than the inclusion size in the region of the macroscopic neck, where they were many times longer. Lateral expansion was found only near the fracture surface of the test pieces. As observed by Puttick, the voids were either (a) triangular holes initiated in the direction of the tensile axis and elon-
Citation
APA:
(1969) Part IX – September 1968 - Papers - Some Observations on the Ductile Fracture of PoIycrystaIIine Copper Containing InclusionsMLA: Part IX – September 1968 - Papers - Some Observations on the Ductile Fracture of PoIycrystaIIine Copper Containing Inclusions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.