Part IX – September 1968 - Papers - The Fatigue of the Nickel-Base Superalloy, Mar-M200, in Single-Crystal and Columnar-Grained Forms at Room Temperature

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 1121 KB
- Publication Date:
- Jan 1, 1969
Abstract
The high- and low-cycle fatigue properties of the nickel-base superalloy, Mar-MBOO, in columnar-grained and single-crystal forms were determined at room temperature. It was found that the fatigue lives of these materials were greatly affected by the size of preexisting cracks in MC-type carbides contained in the micro structure. Most of the data falls on two curves given by: (zN)'/A€= K, where Nf is the number of cycles to failure, Af is the total strain range, and K is a function of carbide size. No difference was observed in the fatigue behavior of the columnar-grained and single-crystal materials for the same MC carbide size. Matrix slip and crack initiation occurred at precracked MC carbides and, to a lesser extent, at micropores. Fatigue crack propagation was mainly in the Stage I mode, i.e., on cry stallo graPhic slip planes. The Stage I fracture in these materials was unusual in that distinct features were observed on the fracture surfaces. In high-cycle fatigue, these features resembled those commonly observed on the cleavage fracture surfaces of bcc and hcp materials. Yet, in this study, the cracks propagated slowly in a cyclic manner. In low-cycle fatigue, the Stage I facets contained equiaxed dimples, similar to those observed on the tensile fracture surfaces of ductile materials. These observations indicate that both local normal and shear stresses are involved in these Stage I fractures. A model is proposed to explain these results based on the weakening of the cohesive energy of the active slip planes by reversed shear deformation and the fracture of the bonds across the weakened planes by the local normal stress. RECENT developments in casting technology have produced cast nickel-base superalloys in columnar -grained and single-crystal forms.1'2 The tensile and creep properties of the nickel-base superalloy, Mar-M200, cast in these forms have been shown to be superior to the corresponding properties of the conventionally cast polycrystalline material.lp2 This improvement in properties results, in part, from the elimination of grain boundaries in the single crystals and the alignment of the grain boundaries parallel to the stress axis in the columnar-grained castings. As part of a program to evaluate the fatigue properties of nickel-base superalloys cast in single-crystal and columnar-grained forms, a study has been made of the cyclic deformation and fracture of Mar-M2OO at room temperature. M. fiFl I .hininr Mpmher AIMF ic ^pninr Rocoarrh Accn^iata anH I) EXPERIMENTAL PROCEDURE The composition range of Mar-Ma00 in weight percent is: 8 to 10 Cr, 9 to 11 Co, 11.5 to 13.5 W, 0.75 to 1.25 Cb, 1.75 to 2.25 Ti, 4.75 to 5.25 Al, 0.01 to 0.02 B, 0.03 to 0.08 Zr, 0.07 to 0.12 C, bal. Ni. All of the castings met the above specifications. The castings were solutionized for 1 to 4 hr at 2250°F followed by aging at 1600°F for 32 hr which resulted in a 0.2 pct offset yield stress of 150,000 psi at room temperature. The microstructure of the material consisted of cuboidal, coherent particles of ordered, fcc Ni3(A1,Ti) (commonly designated y'), approximately 0.3 p on edge, distributed in an fcc y solid-solution matrix. MC carbides together with shrinkage and gas micropores were also distributed throughout the materials. The MC carbides and micropores were located preferentially in the interdendritic interstices, as well as in the grain boundaries in the columnar-grained castings. The (100) direction of all the single crystals and the common (100) axis of the grains in the columnar materials were aligned within about 5 deg of the specimen axis. Fatigue testing was carried out in the high-cycle (HCF) and low-cycle (LCF) fatigue regions, with the major difference being gross yielding of the specimen occurred during the first cycle in the LCF region. This division also corresponded with the more usual one in which the life of a specimen in LCF is less than lo4 cycles and that in HCF is greater than lo4 cycles. The designs of the high-cycle fatigue and low-cycle fatigue specimens are shown in Figs. l(a) and (c), respectively. The gage sections of both HCF and LCF specimens were electropolished prior to testing. The HCF specimens were tested in an MTS, closed-loop, hydraulic fatigue machine at 10 cps in air. The specimens were cycled between a tensile stress of 5000 psi and a maximum tensile stress which ranged from 35,000 to 125,000 psi, Fig. l(b). The LCF specimens were cycled under strain control from zero to a maximum tensile strain, Fig. l(d), in a Wiedemann-Baldwin testing machine. The experimental procedure has been described elsewhere.3'4 Both HCF and LCF tests were interrupted periodically in order to replicate the development of slip and cracking at the specimen surface. This was accomplished by placing plastic replicating tape around the gage section of the specimen while the specimen was in the mahine. The size of the MC carbides for all specimens was measured on a polished longitudinal section through the gage section after fatigue testing. The method of measurement consisted of carefully scanning the entire polished section in order to locate the largest MC carbides. Photographs were then taken of the six longest carbides oriented approximately normal to the
Citation
APA:
(1969) Part IX – September 1968 - Papers - The Fatigue of the Nickel-Base Superalloy, Mar-M200, in Single-Crystal and Columnar-Grained Forms at Room TemperatureMLA: Part IX – September 1968 - Papers - The Fatigue of the Nickel-Base Superalloy, Mar-M200, in Single-Crystal and Columnar-Grained Forms at Room Temperature. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.