Part IX – September 1969 – Papers - A Double Crucible System for One-Gram Scale Plutonium Reductions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 266 KB
- Publication Date:
- Jan 1, 1970
Abstract
A double crucible system was developed for I-g scale plutonium reductions. The equipment consists of an inner MgO crucible, an outer MgO crucible, and a stainless steel pressure vessel. The reduction charge is PIaced in the inner crucible and the annulus between the inner and outer crucibles is filled with a mixture of calcium and iodine. The exothermic reaction between the calcium and iodine in the annulus supplies the heat required for complete reaction of the reduction charge ana' good metal coalescence. Metal yields of 80 to 85 ,pct were obtained from I-g scale reductions and yields as high as 97.5 pct were obtained from 0.5-g scale reductions. The system was used to reduce charges containing as little as 0.1 g of Pu resulting in metal yields up to 90 Pct. THIN metal foils of highly enriched plutonium isotopes are used as targets for cross section and other measurements. The isotopes are separated in the calutrons at Oak Ridge and are very expensive to prepare. Often, only 1 or 2 g of material are available thereby emphasizing the need for a method of preparing these small quantities of metal. Procedures for 1-g scale plutonium reductions have been described, but these procedures require elaborate or expensive equipment. For example, the procedure described by Anselin et al.1 requires an inert atmosphere glovebox and induction heating equipment. The procedure described by Baker2 also uses induction heating equipment to obtain the recommended heating rates and liner temperatures. Baker's procedure also requires high purity PuF4 with very little PuO2 present. The procedure described in this paper resulted from a search for a simple and inexpensive method for making 1-g scale plutonium reductions. EXPERIMENTAL Equipment. The equipment required for the double crucible system consists of a pressure vessel, two MgO crucibles, a MgO crucible lid, and a resistance-heated, vertical crucible furnace. The crucibles were slip cast from high purity MgO and were supplied by the Coors Porcelain Co. and the Norton Co. The pressure vessel and lid were fabricated from 316 stainless steel. Materials. The PuF4 used for this study was obtained from the P1utoniu:m Metal Production Department at Rocky Flats. The PuF4 was prepared in a con- tinuous hydrofluorinator by reacting Pu02 with HF at 650°C. The isotopic composition of the plutonium was approximately 93 pct 239PU, 6 pct 240PU, and 0.5 pct 241PU. Some of this PuF, contained less than 1 pct Pu02 (Batch No. 6 and 7), while other batches contained up to 15 pct Pu02 (Batch No. 3). The chemical analyses of all the PuF4 used for this study is given in Table I. The calcium was 99 pct pure, AEC grade, and only that fraction which would pass through a 20 mesh screen was used. The I2 was USP grade re-sublimed I2 which was ground before being used. Procedure. Various charge compositions and methods for loading the double crucible system were tested. The optimum conditions for 1-g scale reductions are described below. The double crucible system was loaded as shown in Fig. 1. The outer crucible was placed in the pressure vessel and the annulus between them was filled with MgO sand. The inner crucible was placed in the outer crucible, supported by a layer of MgO sand in the bottom of the outer crucible. A mixture of 5.2 g of Ca and 25 g of I2 was placed in the annulas between the two crucibles. The upper portion of the annulas was filled with MgO sand. Next, a layer of a mixture of calcium and I, equal to 20 wt pct of the calcium and I2 used in the main charge was placed in the bottom of the inner crucible. The PuF, to be reduced was mixed with a 30 pct excess of calcium and 1 mole of I2 per mole of Pu and this mixture was placed in the inner crucible. The charge was topped with a layer of a mixture of calcium and I2 equal to 20 wt pct of the calcium and I2 used in the main charge. The pressure vessel was sealed with a flat copper gasket and was purged by alternately evacuating and filling with argon. The purge valve was closed and the vessel was placed in a vertical crucible furnace which was preheated to 950°C. The furnace was turned off after 20 min of heating and the vessel allowed to cool. Experience has shown that. this amount of heating is sufficient to assure complete reaction of the charge. RESULTS AND DISCUSSION The double crucible system has been used to produce plutonium metal on a 0.1- to 1-g scale. Reduction
Citation
APA:
(1970) Part IX – September 1969 – Papers - A Double Crucible System for One-Gram Scale Plutonium ReductionsMLA: Part IX – September 1969 – Papers - A Double Crucible System for One-Gram Scale Plutonium Reductions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.