Part IX – September 1969 – Papers - Precipitation Hardening of Ferrite and Martensite in an Fe-Ni-Mo Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. T. Peters S. Floreen
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
6
File Size:
527 KB
Publication Date:
Jan 1, 1970

Abstract

The age hardening behavior of an Fe-8Ni-13Mo alloy was studied after the matrix had been varied to produce either ferrite, cold u~orked ferrite, or nzassive nzartensite. The aging behavior of the cold worked ferrite and murtensite structures were very similar. The martensite aging kinetics were much different from those observed in earlier studies of aging of maraging steels, even though the martensite wzatri.r had the same dislocation structure as those found in maraging steels. The results suggest that the previously observed precipitation kinetics of maraging steels ?nay have been controlled by the nucleation be-haviov, which in turn were dictated by the alloy compositions and the resultant identities of the precipitating phases. IT is well known that the rate of precipitation from solid solution depends not only on the degree of super-saturation, but also on the density and distribution of dislocations in the matrix structure. These imperfections often act as nucleation sites, and may also enhance atomic mobility. 'Thus, the presence of dislocations is important since the type and distribution of precipitates may be determined by them. The precipitate density and morphology in turn affects the mechanical properties of the alloy. A number of studies have been devoted to the precipitation characteristics in various types of maraging steels.'-" These are iron-base alloys containing 10 to 25 pct Ni along with other substitutional elements such as Mo, Ti, Al, and so forth, that are used to produce age hardening. The carbon contents of these steels are quite low, and carbide precipitation is not believed to play any significant role in the aging reactions. After solution annealing and cooling these alloys generally transfclrm to a bcc lath or massive martensite structure characterized by elongated martensite platelets that are separated from each other by low angle boundaries, and that contain a very high dislocation den~it~.~~~~~~~~-~~ Age hardening is then conducted at temperatures on the order of 800" to 1000°F to produce substitutional element precipitation within the massive martensite matrix. Most of the aging studies to date have revealed several common traits in these alloys, regardless of the particular identity of the precipitation elements. Generally hardening has been found to be extremely rapid, with incubation times that approach zero. The agng kinetics, at least up to the time when reversion of the martensite matrix to austenite begins to predominate, frequently follow a AX/~~ = ktn type law, where x is hardness or electrical resistivity, t is the time, and k and n are constants. The values of n are frequently on the order of 0.2 to 0.5, which are well below the idealized values of n based on diffusion controlled precipitate growth models. Finally, the observed activation energy values are typically on the order of 30 kcal per mole, and thus are well below the nominal value of about 60 kcal per mole found for substitutional element diffusion in ferrite. The common explanation of these observations is that the precipitation kinetics are controlled by the massive martensite matrix structure. Thus, the absence of any noticeable incubation time has been attributed, after ~ahn," to the fact that the precipitate nucleation on dislocations may occur without a finite activation energy barrier. The low values of the activation energy are generally assumed to be due to enhanced diffusivity in the highly faulted structure. If this explanation that the precipitation kinetics are dominated by the matrix structure is correct then one should observe a distinct difference in lunetics between aging in a martensitic matrix and aging the same alloy when it has a ferritic matrix. Such a comparison cannot be made with conventional maraging compositions, but could be made with the alloy used in the present study. In addition, the ferritic structure of the present alloy could be cold worked to produce a high dislocation density so that one could determine whether ferrite in this condition would age similarly to martensite. EXPERIMENTAL PROCEDURE The composition of the alloy used in this study was 8.1 pct Ni, 13.0 pct Mo, 0.10 pct Al, 0.13 pct Ti, 0.012 pct C, bal Fe. The alloy was prepared as a 40 lb vacuum induction melt. The heat was homogenized and hot forged at 2100°F to 2 by 2 in. bar, and then hot rolled at 1900°F to $ in. bar stock. The aging lunetics were followed by Rockwell C hardness and electrical resistivity measurements. Samples for hardness testing were prepared as small strips approximately 2 by $ by 4 in. thick. Electrical resistivity was studied on cylindrical samples approximately 2 in. long by 0.1 in. diam. The method for making the alloy either martensitic or ferritic was based on the fact that the alloy showed a closed y loop type of phase diagram. At high temperatures, above approximately 24003F, the alloy was entirely ferritic. Small samples on the order of the dimensions described above remained entirely ferritic after iced-brine quenching from this temperature. In practice, a heat treatment of 1 hr in an inert atmosphere at 2500°F followed by water quenching was used to produce the ferritic microstructure. These samples were quite coarse grained and usually en-
Citation

APA: D. T. Peters S. Floreen  (1970)  Part IX – September 1969 – Papers - Precipitation Hardening of Ferrite and Martensite in an Fe-Ni-Mo Alloy

MLA: D. T. Peters S. Floreen Part IX – September 1969 – Papers - Precipitation Hardening of Ferrite and Martensite in an Fe-Ni-Mo Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account