Part IX – September 1969 – Papers - The Shape and Strain-Field Associated with Random Matrix Precipitate Particles in Austenitic Stainless Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 545 KB
- Publication Date:
- Jan 1, 1970
Abstract
Electron microscope evidence which indicates that TaC may precipitate at random sites in the matrix is presented. Initially the particles are almost spherical and coherent with the matrix. However, as they grow in conditions in which there are insufficient vacancies to relieve lattice strain, the particles rapidly lose coherency in two directions and continue to grow as plates with approximately the full lattice mismatch strain present perpendicular to the plane of the plate. The necessary relief of strain comes from dislocations loops which do not become visible until the later stages of aging. The rapid decrease of apparent strain to low values of appoximately 1 pct at small particle sizes arises not from a complete incoherency but from applying a model wrong for the particle shape and strain distribution. PREVIOUS work has shown that MC-type carbides may precipitate intragranularly in austenitic stainless steel on dislocations,1'2 in association with stacking faults,3'4 and randomly through the matrix,5-7 In investigations of the matrix precipitate by thin-foil electron microscopy, considerable lattice strain has been found to occur around the precipitating phase.7'8 Attempts have been made to evaluate the amount of lattice strain by using the methods developed by Ashby and brown.9,10 Values of the linear strain, much less than the 17 pct theoretical mismatch (for TaC), have been reported; it has been suggested that this is due to either a loss of coherency1' or vacancy absorption which occurs during either the initial nucleation or growth of the precipitate." This report is an extension of earlier work7 that dealt with the precipitation of TaC from an 18Cr/12Ni/ 2Ta/O.lC alloy after it had been quenched from 1300°C and aged between 600" and 840°C. In particular, the shape of the precipitate particles and the amount of strain in the matrix, due to the precipitate, have been studied. The work described here is part of a wider investigation of factors that affect carbide precipitation in austenitic stainless steel," details of which are to appear elsewhere. RESULTS The present investigation can be conveniently split into two aspects of the strain-fields surrounding the matrix particles: 1) information derived from the strain-field which indicates the shape and habit plane of the precipitate particles and 2) the magnitude and sign of the strain-field. The Shape and Habit Plane of the TaC Precipitate. In the early stages of aging twin lobes (normally black F. H. FROES, formerly at the University of Sheffield, Sheffield, England, is Staff Scientist, Colt Industries, Crucible Materials Research Center, Pittsburgh, Pa. D. H. WARRINGTON is Lecturer, Department of Metallurgy, University of Sheffield. Manuscript submitted November 1, 1968. IMD on white background, i.e., for the deviation parameter, S > 0) that indicate the strained region of the matrix define the position of the particles by bright field transmission electron microscopy. The actual particles were not detected until they were approximately 120Å diam; below this size they were too small to be imaged in the electron microscope. This meant that particle growth that had occurred before this stage had to be inferred from the matrix strain-field contrast. In all cases when diffraction effects were observed from the precipitate particles, a cube-cube orientation relationship (i.e., (llO)ppt Il<llO>matrix and {1ll }ppt {III} matrix) existed between the precipitate and the matrix. From the matrix precipitate particles lying along edge-on {111} planes (e.g., at A, Fig. I), the precipitates are seen to be plate-like with their diameter being roughly 18 times their thickness after 5000 hr at 650°C. However, the exact shape of the particles cannot be determined because of the masking effect of the strain-field contrast. If a dark-field micrograph, using a precipitate reflection, is studied, Fig. 2, a number of the projected images of the TaC particles [on the (110) foil surface] apear to have straight edges parallel to projected f111) planes. Thus, it appears that in the later stages of aging the TaC particles are plate-like with some tendency for the edges of the plate to be bounded by the matrix close-packed {ill} planes (though the general shape of the particles in the plane of the plate is circular and thus the "diameter" of the particles has a real physical significance). It should be noted that the bands of fine discrete particles observed in Figs. 1 and 2 are not the matrix precipitate discussed in this paper but are precipitates associated with extrinsic stacking faults3j4 occurring on (111) matrix planes. **£** ****** \ *x 23 Fig. 1—18/12/2~a/0.1~ alloy. Solution treated at 1300°C for 1 hr, water quenched, and aged 5000 hr at 650°C. The (112) directions shown are the traces of the e&e-on (111) planes. Foil normal [110]; operating reflection (331); bright field micrograph.
Citation
APA:
(1970) Part IX – September 1969 – Papers - The Shape and Strain-Field Associated with Random Matrix Precipitate Particles in Austenitic Stainless SteelMLA: Part IX – September 1969 – Papers - The Shape and Strain-Field Associated with Random Matrix Precipitate Particles in Austenitic Stainless Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.