Part V – May 1968 - Papers - Effect of Carbon on the Strength of Thorium

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 552 KB
- Publication Date:
- Jan 1, 1969
Abstract
The effect of carbon in solid solution on the plastic behavior of thorium was studied by measuring the flow stress of Th-C alloys from 4.2" to 573°K and at several strain rates. Carbon was found to strengthen thorium primarily by increasing the thermally activated component of the flow stress. The strengthening due to carbon was directly proportional to the carbon content and decreased rapidly with increasing temperature up to 423" K. The flow stress also increased with increasing strain rate. The strengthening appears to be due to a strong short-range interaction between carbon atoms and dislocations. A yield point was observed in the Th-C alloys which increased with increasing carbon content. JTREVIOUS study of the mechanical properties of thorium has been confined largely to the measurement of the engineering properties. Work prior to 1956 has been summarized by Milko et al.1 who reported that additions of carbon to thorium sharply increased the room-temperature strength. In addition, the yield strength was observed to decrease rapidly over the temperature range from 25" to 500°C. In 1960, Klieven-eit2 measured the flow stress of thorium containing 400 ppm C. He found that over the temperature range from 78" to 470°K the flow stress was strongly dependent on temperature and rate of deformation. A drop in the load-elongation curve, or a yield point, was observed over most of the above temperature range. Above 470°K, the flow stress was nearly independent of temperature and strain rate. This strong temperature and strain rate dependence of flow stress is not generally observed in fcc metals. It is, in fact, more typical of the behavior reported for bcc metals. Bechtold,3 Wessel,4 and conrad5 have pointed out the striking difference between the commonly studied bcc metals and fcc metals in regard to the effect of temperature and strain rate on the flow stress. Zerwekh and scott6 studied the plastic deformation of thorium reported to contain 12 ppm C. They found that this material did not obey the Cottrell-Stokes law as expected for fcc metals. In addition, they found values of the activation volume smaller by an order of magnitude than expected for an fcc metal. They concluded that thorium was strengthened by a randomly dispersed solute. Thorium differs from many other fcc metals that have been studied extensively in that it shows a relatively high carbon solubility at room temperature. Mickleson and peterson7 report the solubility limit at room temperature to be 3500 ppm C. The lowest value reported is that of Smith and Honeycombe8 who report the limit to be 2000 ppm C at 350°C. The pres- ent investigation was a systematic study of the flow stress and yield point phenomenon of thorium over a broad range of carbon content, temperature, and strain rate. EXPERIMENTAL PROCEDURE The thorium used in this investigation was produced by the reduction of thorium tetrachloride with magnesium as described by Peterson et a1.' Chemical analysis of the original ingot after arc melting and electron beam melting is shown in Table I. Alloys were prepared by arc melting this thorium with high-purity spectrographic graphite. Threaded specimens with a gage length 0.252 in. diam by 1.6 in. long were used for the constant stress or creep measurements. These specimens were machined from rod which had been cold-rolled and swaged to % in. diam. Tensile specimens were prepared by swaging annealed 3/8 -in.-diam rod to 0.102 *0.001 in. The as-swaged wire was cut to lengths of 2 in., annealed, and the center 1-in. gage length elec-tropolished to 0.100 ±0.001 in. The specimens were gripped for a length of 3 in. at each end by a serrated four-jaw collet which was tightened by a tapered compression nut. No slipping occurred in the grips and negligible deformation was observed outside the 1-in. gage length. Both the creep and tensile specimens were annealed at 730°C under a vacuum of 1 x X Torr. The resulting structures consisted of equiaxed recrystallized grains with a grain size of 3200 grains per sq mm for the tensile specimens and 2200 grains per sq mm for the creep specimens. After the specimens were prepared, samples were analyzed for nitrogen, oxygen, and hydrogen. The results of these analyses are given in Table 11.
Citation
APA:
(1969) Part V – May 1968 - Papers - Effect of Carbon on the Strength of ThoriumMLA: Part V – May 1968 - Papers - Effect of Carbon on the Strength of Thorium. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.