Part V – May 1968 - Papers - Secondary Recrystallization in Iron

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. A. Stickels C. M. Yen
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
11
File Size:
1170 KB
Publication Date:
Jan 1, 1969

Abstract

Secondary recrystallization was investigated in vacuum-melted electrolytic iron to which 70 pm N was vacuum-meltedadded. The secondary texture is "near {554}<225>" for material cold-rolled 75 to 90 pct, the sharpness of the texture increasing with increased rolling reduction and with decreased annealing temperature. At reductions of 95 and 97.5 pct the secondary texture is &apos;"near {322)(296)". Both secondary orientations also exist as major components of the primary re-crystallization texture. Development of a strong "near {554) (225)" secondary texture appears to depend on the evolution of the Primary texture to a transition texture depleted in orientations near the secondary orientation before the onset of secondary growth. A variety of qualitative experinzents have been used to show that nitrogen is important in limiling primary grain growth. The presence of nitrogen does not seem essential for the establishment of a transition texture, but a loss of nitrogen during annealing may facilitate growth of grains in the secondary orientation. Secondary grains we shown to form initially at the specimen surface. This is not thought to indicate that surface energies are important in the growth process. It is proposed that the quasi-two-dimensional character of surface grains permits discontinuous growth parallel to the surface before secondary growth of interior grains is possible. An earlier study of recrystallization textures in 90 pct cold-rolled electrolytic iron showed that secondary recrystallization occurred after annealing for several days at 700C1 This type of secondary recrystallization, which had not been reported previously, results in the formation of a strong texture, best described by the indices "near {554}(225)". The purpose of the present work was to investigate the effect of various processing variables on secondary recrystallization in this material and determine the mechanism of secondary grain growth. LITERATURE REVIEW An understanding of the mechanism of a secondary recrystallization process depends on knowing: 1) how grains in the secondary orientation come to be in the primary recrystallization texture; 2) why normal grain growth does not occur; and 3) what factors determine the strength of the secondary texture. For secondary growth of grains of a particular orientation, a certain minimum fraction of the grains must be in that orientation after primary recrystallization. This requirement is apparently satisfied "naturally" in certain systems, i.e., when the primary texture obtained by rolling and recrystallizing material initially randomly oriented contains a sufficient fraction of primaries in the secondary orientation. However, in other cases, e.g., {110}<001> and {100}<001> secondary growth in silicon iron,2 it is necessary to enhance the fraction of primary grains in the secondary orientation by rolling and recrystallizing textured material. In the present case, the "near {554}<225>" orientation is contained within the spread of orientations found in the primary recrystallization texture of iron or bbc iron-base alloys. In systems where the main driving force for secondary growth is the reduction in total grain boundary energy, secondary growth is observed only when normal grain growth is minimized. Four ways in which normal grain growth can be limited are: 1) Limitation by a strong primary texture. When a very strong primary texture consisting of a single component or twin-related components develop, most primary grains are separated from one another by relatively immobile small-angle grain boundaries. The classic instance of this is secondary growth into the primary cube texture in some fcc metals. 2) Limitation by precipitates. Precipitates present in the proper volume fraction with a suitable dispersion will limit primary grain growth. The role of MnS inclusions in impeding normal grain growth in Si-Fe is well-documented.5 3) Limitation by sheet thickness. Normal grain growth slows drastically when the mean grain diameter is of the same order as the sheet thickness. This effect has been used to obtain secondary recrystallization in thin sheets of high-purity silicon iron.&apos; 4) Limitation by solute impurities. It is well-established that certain impurity elements in solution can have a large effect on grain boundary mobility.&apos; However, there does not seem to be any secondary recrystallization process in which primary grain size stabilization has been shown to be due to the drag exerted on grain boundaries by dissolved impurities. In certain systems, e.g., secondary recrystallization in silver,&apos; the means by which normal grain growth is limited has not been identified, and solute-impurity limitation might be suspected. In order to understand the factors which determine secondary texture strength in three-dimensional growth, it is necessary to examine in more detail the current picture of general secondary recrystallization processes. Following Cahn,9 it is assumed that the primary grains have a range of sizes and that secondary growth of one of the large grains in this distribution is possible when it exceeds a critical size with respect to its neighboring grains. The critical size depends on the ratio ?S/?p, where ?s is some sort of average grain boundary energy between the potential secondary and the primary grains and ?p is some sort of average grain boundary energy between primary grains. For a constant primary grain size, the critical size for secondary growth increases as ?$/?p increases. May and Turnbull5 have incorporated the
Citation

APA: C. A. Stickels C. M. Yen  (1969)  Part V – May 1968 - Papers - Secondary Recrystallization in Iron

MLA: C. A. Stickels C. M. Yen Part V – May 1968 - Papers - Secondary Recrystallization in Iron. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account