Part V – May 1968 - Papers - Sulfur in Liquid Iron Alloys: I, Binary Fe-S

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 428 KB
- Publication Date:
- Jan 1, 1969
Abstract
Equilibrium in the reaction was investigated at temperatures of 1500°, 1550°, and 1600°C for sulfur concentrations up to 7.2 wt pct. Multisample crucibles contained the liquid alloys in a resistance-heated furnace using a technique especially designed for the study of more complex alloys to be reported separately. Modern free-energy data are used to correct the H2S:H2 ratio for dissociation of H2S and calculalion of the partial pressure of S2. Published data on the equilibrium are similarly corrected. Thermodynanzic treatment of the data employs the composition variable zs = nS/(nFe — nS) and the activity coefficient Gs = as/zs The data at 1500" and 1550°C are fitted by the equation log s = —2.30zs. Within the limits of experimental error the same coefficient is applicable to the data at higher temperatures. Equations are given for the free-energy change in Reaction [I] as well as for the solution of S, gas in the metal. The heat of solution of 1/2 s2 is -32.28 i2.5 kcal. Uncertainty in the free energy is very much smaller. For dilute solutions of interest in steelmaking, the activity coefficient of sulfur is unchanged from that listed in Basic Open Hearth Steel-making. DETERMINATIONS of the thermodynamic properties of sulfur in liquid iron by Morris and williams1 and by Sherman, Elvander, and chipman' provided a basis for control of sulfur in steelmaking processes. From the standpoint of understanding the chemistry of metal plus nonmetal in liquid solution they left several questions unanswered. The activity of sulfur in dilute solution at about 1600°C was well-established but temperature coefficients were uncertain, due at least in part to the use of the optical pyrometer and uncertainty regarding the effect of sulfur on emissivity. It appeared that deviation from Henry's law increased with increasing temperature, a most unusual behavior requiring either confirmation or disproof. These studies were based on experimental determination of equilibrium in the reaction: At high temperatures H2S is partially dissociated so that the gas mixture contains HS, S2, and S in addition to HS. At the time of the earlier studies the free energies of these constituents were unknown and it was therefore impossible to make adequate correction for dissociation. Observations on the effects of alloying elements by Morris and coworkers1, 3 and by Sherman and Chip-man4 enable us to assess the effects of alloying elements on the activity and to make corrections for incidental impurities in the binary liquid. These studies as well as a number of more recent investigations will be reviewed in detail after out own experimental results have been presented. It was our purpose in planning this study to avoid uncertainties regarding the emissivity of alloys and the errors of thermal diffusion which plagued some of the early attempts,5 by using a resistance furnace and thermocouple in preference to induction heating and optical pyrometer. Modern data on free energies of the gaseous species are to be applied to our data and to those of other investigators to obtain corrected values of K1 and of the activity coefficient and ultimately to relate the sulfur content of the bath to the equilibrium partial pressure of S,. Extension of the study to include ternary and complex solutions will be described in a later section. EXPERIMENTAL METHOD a) Preparation and Calibration of H2-H2s Gas Mixture. The source of hydrogen sulfide was a preparer mixture of 43 pct H2S, balance hydrogen, contained in a large aluminum cylinder. This was passed through anhydrone and through a microflowmeter. Hydrogen was passed through platinized asbestos, ascar-ite, and anhydrone, and through a capillary flowmeter. Argon was passed through copper wool at 500°C, then through ascarite, anhydrone, and a flowmeter. The flow rate of hydrogen was kept constant at 200 ml per min, to which an arbitrary amount of the hydrogen-hydrogen sulfide mixture was constantly added and then the prepared gas mixture was introduced into the reaction tube through a gas mixer. In certain experiments 200 ml per min of argon was added to the hydrogen-hydrogen sulfide gas mixture to increase the total flow rate of gas. The ratio of hydrogen-hydrogen sulfide in the inlet gas was checked for each run by chemical analysis. A sample of the gas taken from a bypass was bubbled through zinc and cadmium acetate solution (4 pct zinc acetate, 1 pct cadmium acetate, and 1 pct acetic acid) to remove hydrogen sulfide from the gas mixture, and the flow rate of the remaining hydrogen was measured by a soap bubble method to determine the volume of hydrogen. The amount of hydrogen sulfide absorbed in solution was determined by titration with iodine against sodium thiosulfate, with starch used as the indicator. The ratio of hydrogen sulfide to hydrogen in the inlet gas could be kept within ±2 pct in the range from 10-2 to 5 x 10"4 which corresponds to from 0.2 to 7.0 wt pct sulfur in liquid iron. b) Furnace Arrangement. Fig. 1 shows the furnace arrangement and the shape of the alumina crucible used in this experiment. A vertical-tube silicon carbide electric resistance furnace contained the reaction tube which consisted of two parts, the gas-tight
Citation
APA:
(1969) Part V – May 1968 - Papers - Sulfur in Liquid Iron Alloys: I, Binary Fe-SMLA: Part V – May 1968 - Papers - Sulfur in Liquid Iron Alloys: I, Binary Fe-S. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.