Part V – May 1969 - Papers - Formation of Austenite from Ferrite and Ferrite-Carbide Aggregates

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. R. Speich A. Szirmae M. J. Richards
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
2877 KB
Publication Date:
Jan 1, 1970

Abstract

The formation of austenite from ferrite, ferrite plus retastable carbide, spheroidite, and pearlite has been studied in a series of irons, Fe-C alloys, and plain-carbon steels using fast heating techniques. In the absence of carbide, austenite nucleates at ferrite/ferrite grain boundaries; nucleation is followed by the rapid growth characteristic of a massive transfornation. The trarnsformation occurs at 950°C at heating rates of 106º C per sec and cannot be suppressed. Metastable carbide dissolves before austenite forms and does not influence the transformation kinetics. For spheroidite structures, austenite nucleates preferentially at the jinction between carbides and ferrite grain boundaries. Growth from these centers proceeds until the carbide is completely enveloped; subsequent growth occurs by carbon diffusion through the austenite envelope. For pearlite structures, austenite nucleates preferentially at pearlite colony intersections. Carbide la)?zellae dissolve at the advancing austenite interface but complete solution of carbide does not occur; the residtial carbide is eventually dissolvled or spheroid-ized depending on the carbon cuntent. The magnitude and temperature dependence of the austenite growth rate into Fe-C pearlite when incomplete carbide dissolution is assumed are satisfactorily explained by an approximate colume diffusion model. The impurities present in plain-carbon steel reduce the growth rate of austenite in comparison to that jound in an Fe-C alloy. The formation of austenite has been studied in much less detail than the decomposition of austenite. This is primarily a result of the importance of harden-ability in determining the mechanical properties of steel. Recently, more interest in the kinetics of austenite formation has resulted from the discovery by Grange1 that rapid heating techniques strengthen steel by refining the austenite grain size. Although the strengthening effect is not large, it is accompanied by no loss in ductility. In addition, interest continues in rapid heat treatment of low-carbon steel sheet for tin plate applications.2,3 Among the few systematic studies of austenite formation are the early work of Roberts and Mehl4 on formation of austenite from pearlite and recent work of Molinder5 and of Judd and paxton6 on formation of austenite from spheroidite. Also, Boedtker and Duwez7 and Haworth and paar8 have recently studied the formation of austenite from ferrite in relatively pure iron, Kidin et al.9,10 have studied the formation of austenite in 8 pct Cr steels, and Paxton has recently discussed various aspects of austenite formation in steels." The present work was undertaken to determine the kinetics of austenite formation for a variety of starting structures including ferrite, ferrite plus metastable carbide, ferrite plus spheroidal cementite, and ferrite plus pearlitic cementite. Emphasis was placed on determining the active sites for austenite nucleation, determining the temperature and time range of austenite formation, and in the case of pearlite a careful study of the growth rate of austenite was made in the absence and presence of impurities. By using a variety of heating techniques including laser-pulse heating, it has been possible to study austenite formation in an isothermal fashion over a wide range of temperatures. EXPERIMENTAL PROCEDURE The alloys studied in the present work are a zone-refined iron with 4 pprn C, an Fe-C alloy with 130 pprn C, 2 Fe-C alloys with 0.77 and 0.96 wt pct C, and a plain carbon steel with 0.96 wt pct C. The zone-refined iron and Fe-C alloys contained 60 pprn and 200 pprn total substitutional impurities, respectively. The plain carbon steel contained 2400 pprn Si, 2000 pprn Mn, and 900 pprn Cr. Various heat treatments were given to these alloys to produce different starting structures of equiaxed ferrite, ferrite plus metastable carbide, fine pearlite, and spheroidite. These heat treatments are given in Table I. A wide range of heating rates were employed in this work because many of the reactions occur so quickly at temperatures in the austenite range that they are completed during the initial heating cycle unless very fast heating rates are used. Essentially the same heating techniques employed by Speich et a1.12 and Speich and Fisher13 were used in this work. For time intervals of 2 sec to 20 hr, simple hand immersion of 0.010-in. thick specimens in a Pb-Bi bath was employed. These specimens were quenched in a 10 pct NaC1, 2 pct NaOH aqueous bath. For time intervals of 100 m-sec to 2 sec, an automatic dunking and quenching device was employed with 0.002-in. thick specimens. Again, liquid Pb-Bi baths were used for a heating medium but now helium gas quenching was employed. For time intervals of 2 to 100 m-sec a laser heating device was employed with 0.002-in. thick specimens; a helium plus fine water-droplet spray was now used for quenching. Additional information on heating times shorter than 2 m-sec was obtained by study of the zones around the centrally heated laser spot. Here diffusion of heat from the centrally heated zone raises the temperature of the specimen locally to all temperatures between ambient and the peak temperature, but for times of the order of microseconds. All the heat-treated specimens were examined by
Citation

APA: G. R. Speich A. Szirmae M. J. Richards  (1970)  Part V – May 1969 - Papers - Formation of Austenite from Ferrite and Ferrite-Carbide Aggregates

MLA: G. R. Speich A. Szirmae M. J. Richards Part V – May 1969 - Papers - Formation of Austenite from Ferrite and Ferrite-Carbide Aggregates. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account