Part V – May 1969 - Papers - Rapid Quenching Drop Smasher

The American Institute of Mining, Metallurgical, and Petroleum Engineers
D. R. Harbur J. W. Anderson W. J. Maraman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
1145 KB
Publication Date:
Jan 1, 1970

Abstract

A device for rapidly quenching liquid metals into thin platelets has been developed at the Los Alamos Scientific Laboratory. This rapid quenching equipment is built around the technique of catching a molten drop of metal between a rapidly closing plate and a stationary plate. The design and operation of this unit are described. The closing speed of the smasher plate at impact is 12.6 ft per sec. The quenching rate for this device is controlled by the interface resistance between the plates and the platelet, and is dependent upon the heat content and density of the material being quenched. The initial quenching rate down to the freezing point of the platelet material is lo5º to 106ºC per sec. After an isothermal delay, which is poportional to the heat of fusion of the platelet material, the final cooling rate down to the temperature of the smaslier plates is l04ºto 105cº per sec. RAPID heating of metals by capacitor discharge and other methods has provided the metallurgist with a useful tool for probing into the kinetics of phase changes and the many nonequilibrium phenomena which occur during rapid temperature changes. Equally interesting studies can also be made on metals and alloys which are rapidly cooled from the liquid state.' Studies in this field have been limited, however, because the rates at which metals could be cooled were many orders of magnitude slower than the rates possible for heating. In recent years many new laboratory methods have been developed to rapidly cool metals from the liquid state to ambient temperature and below.2"4 All of these methods involve spreading a liquid drop of metal into a thin foil in a very short time. The methods developed have varied from ejecting a drop of molten metal at the inside surface of a rotating cylinder or stationary curved plate to catching a falling drop of molten metal between rapidly closing plates. The equipment which has been developed at the Los Alamos Scientific Laboratory for rapidly cooling molten materials uses the latter of these two approaches. The basic design, operation, and initial results of this rapid quenching device are given in this report. APPARATUS The drop smasher, which is now being used to obtain rapidly cooled metal foils, is shown in Fig. 1. Basically the device consists of a smasher plate which is driven by a solenoid into a stationary plate. The solenoid is activated by a drop passing through the photoelectric cell and is powered by discharging an adjustable 350-v capacitor bank with a 66-amp peak current into it. This power supply is designed so that the solenoid is powered for 2 m-sec after plate closure to minimize the rebound effect. There is an adjustable time-delay mechanism between the photoelectric cell and the solenoid. Both smasher plates have changeable inserts so that a variety of materials can be used to smash the molten drop. The shaft of the moving plate is guided in an adjustable housing which has ball-bearing walls. The cabinet shown to the left of the drop smasher in Fig. 1 contains the power supply and receiver for the photoelectric cell, the time delay mechanism, and the capacitor bank. The drop smasher can be placed inside a vacuum chamber, for use with radioactive materials, with the upper plate forming the lid, as shown in Fig. 2. On top of the vacuum lid is an induction coil, powered by an Ajax induction generator, which is used to melt drops from the end of the rod extending through the vacuum seal on top the quartz tube. OPERATION The drop smasher shown in Fig. 2 is operated in the following manner. The smasher plates are separated and the unit is lowered into the vacuum chamber using a pressurized cylinder. The induction coil, quartz tube, and lid with sliding vacuum seal are then assembled on top the vacuum chamber. A rod of the material for rapid quenching studies is connected to the rod extending through the sliding vacuum seal. The vacuum chamber is then evacuated and the desired atmosphere established. The photoelectric cell is turned on, and the capacitor bank is charged and armed. Power is supplied to the induction coil, and the rod of material for rapid quenching studies is lowered into the induction field. A molten drop forms on the end of the rod, drops off, falls through the light beam of the photoelectric cell, and is then caught between the smasher plates. .
Citation

APA: D. R. Harbur J. W. Anderson W. J. Maraman  (1970)  Part V – May 1969 - Papers - Rapid Quenching Drop Smasher

MLA: D. R. Harbur J. W. Anderson W. J. Maraman Part V – May 1969 - Papers - Rapid Quenching Drop Smasher. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account