Part V – May 1969 - Papers - The Heats of Formation of Silver-Rich Ag-Cd Solid Solutions

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. Waldman A. K. Jena M. B. Bever
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
1318 KB
Publication Date:
Jan 1, 1970

Abstract

The heats of formation at 273°K of 6 silver-rich Ag-Cd solid solutions and the heat of formation at 78°K of one solid solution have been measured by tin solution calorimetry. The heats of formation are analyzed in terms of the quasichemical theory. If the enthalpy diffel-ence between a hypothetical fcc form and the hcp form of cadmium is taken into account, this analysis does not lead to the conclusion put forth in the literature that electronic effects make significant contributions to the heats of formation of silver-rich Ag-Cd solid solutions. The temperature dependence of the heats of formation is appreciable and negative near 78ºK, but decreases gradually to nearly zero abore 400°K. The relative partial enthalpies per grarn -atom of silver at 541°K and cadmium at 532" and 541°K in tin have also been determined. THE composition range of the silver-rich Ag-Cd solid solutions stable at room temperature extends to about 40 at. pct Cd. Heats of formation of these solid solutions at 308" and 723°K have been measured by solution calorimetry.1,2 Heats of formation for an average temperature of 800°K have also been calculated from vapor pressures.2,3 The heats of formation deviate from the values predicted by the quasichemical theory above about 30 at. pct Cd. This deviation has been attributed to electronic effects at the Brillouin zone boundaries.2 The heats of formation of Ag-Cd alloys are essentially the same at 308", 723", and 800°K; consequently the temperature dependence of the heat of formation d?H/dT = ?Cp is vanishingly small, although from the exothermic heats of formation a negative value would have been expected. In the investigation reported here the heats of formation at 273°K of 6 silver-rich Ag-Cd solid solutions and the heat of formation at 78°K of 1 solid solution have been measured by tin solution calorimetry. The results are analyzed in terms of the quasichemical theory and the dependence of the heats of formation on temperature is discussed. The relative partial enthalpies per gram-atom of silver in tin at 541" and cadmium in tin at 532" and 541°K were obtained in the course of this investigation. The values of the temperature dependence of the relative partial enthalpies per gram-atom of silver in tin derived from the data reported by various investigators2,4-9 are contradictory. The literature contains only a value for 517°K of the relative partial enthalpy per gram-atom of solid cadmium in tin.2 EXPERIMENTAL PROCEDURES Samples of Ag-Cd solid solutions were prepared by melting weighed amounts of silver (99.99 pct pure) and cadmium (99.95 pct pure) in graphite crucibles under a flux of molten potassium chloride.10 The solidified ingots were sealed in evacuated Vycor tubes and annealed at 775°K for 10 days. The ingots were swaged and drawn into wires. The wires, sealed in evacuated Pyrex tubes, were held at 725°K for 5 hr and cooled to 365°K at an average rate of 2.5ºK per hr, followed by furnace cooling to room temperature. Chemical analysis of samples taken from different parts of each ingot gave no indication of segregation. Metallographic examination showed the samples to be homogeneous. Samples of the solid solutions or of the component elements were added to tin-rich baths in a calorimeter." At the start of a run the bath consisted of pure tin. Silver was used in the form of wire of 0.01-in. diam as supplied and cadmium in the form of lumps. Gold (99.999 pct pure) was added with the samples in order to reduce the endothermic heat effect of additions of Ag-Cd solid solutions. Samples of only one composition were added in a run and the ratio of the weight of alloy to that of gold was the same in all additions of a given run. In each run several calibrating additions of tin were made from 273°K. The heat contents of tin were calculated from the following equation, which is based on published data:12 (HTºK- H279º) = 6.70 T - 72,300/T + 20 cal/gram-atom; 505°K < T < 650°K The heat effect of each addition was plotted against the average of the sum of the atom fractions of solutes in the solution before and after that addition. The total concentration of solutes at the end of a run was less than 2 at. pct. In this range the heat effect was a linear function of the atom fraction of the solutes. The heat effect at infinite dilution and the composition dependence of the heat effect were obtained from the plots. RESULTS AND DISCUSSION Evaluation of Data. The linear dependence on composition of the heat effects of additions suggests that in the dilute range the enthalpy interaction coefficients other than the first-order coefficients of silver, cadmium, and gold are negligible, as shown in a concurrent publication.13 The heat effects at infinite dilution and the values of the composition dependence of the heat effects are listed in Table I.
Citation

APA: J. Waldman A. K. Jena M. B. Bever  (1970)  Part V – May 1969 - Papers - The Heats of Formation of Silver-Rich Ag-Cd Solid Solutions

MLA: J. Waldman A. K. Jena M. B. Bever Part V – May 1969 - Papers - The Heats of Formation of Silver-Rich Ag-Cd Solid Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account