Part V – May 1969 - Papers - The Kinetics of Dissolution of Synthetic Chalcopyrite in Aqueous Acidic Ferric Sulfate Solutions

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 1262 KB
- Publication Date:
- Jan 1, 1970
Abstract
When sintered disks of synthetic chalcopyrite (CuFeS2) were leached in acidified aqueous solutions of ferric sulfate, the following reaction stoichiometry was obtained: CuFeS2 + 2Fe2(SO4)3 = CuSO4 + 5FeSO4 + 2S Over the temperature range from 50º to 94ºC, the reaction displayed parabolic kinetics. The parabolic rate constant for the dissolution of copper is given by the equation: log.k(mg2/cm4-hr)= 11.850 - 3780/T The activation energy for the dissolution process is 17 ± 3 kcal per mole. The parabolic kinetics have been attributed to the progressive thickening of a sulfur film on the surface of the chalcopyrite. When the leaching solutions contain less than 0.01 molar Fe+3 , the Fe concentration influences the rate of leaching, probably through a mechanism involving the diffusion of ferric sulfate through the sulfur layer. At higher Fe+3 concentrations, the rate control in the leaching. reaction has been attributed to the diffusion of ferrous sulfate through the sulfur. The rate of reaction is insensitive to changes in acid concentration and in disk rotation speed. ThE reaction of acidic ferric sulfate solutions with various sulfide minerals is of practical interest for both bacterial and heap leaching. This leaching medium is generally used with low-grade ores that cannot be treated profitably by conventional means. In both bacterial leaching1-3 and heap leaching, the active agent for sulfide dissolution is ferric sulfate. Although the reactions of ferric sulfate with chalcocite, covellite, and bornite have been investigated,4*7 the kinetics of leaching chalcopyrite with ferric sulfate have not been thoroughly studied. This paper reports a study of that reaction. EXPERIMENTAL Reagent-grade sulfur was purified by the method of Bacon and FanelliB and then it was vacuum-distilled to remove any soluble magnesium salts that had been introduced during the purification procedure.9 From stoichiometric quantities of the purified sulfur and hydrogen-reduced electrolytic copper sheet (99.90 pct Cu), CuS was synthesized at 450°C in a vacuum-sealed, pyrex vessel. About 24 hr was required for the completion of the reaction. A similar procedure involving hydrogen-reduced iron wire (99.90 pct Fe) was used to synthesize FeS1.002. A 2-furnace arrangement was required. The iron was heated to 800°C while the sulfur was maintained at about 400°C. Although the reaction to consume the sulfur was rapid, the material required additional heating (1 week) in a sealed silica ampoule at 800°C before it was homogenized. X-ray powder diffraction analysis confirmed that the copper sulfide was covellite and that the iron sulfide was troilite. The composition of the iron mineral was confirmed by wet chemical analysis. The two sulfides were ground to minus 100 mesh, weighed in equimolar amounts, mixed thoroughly, and pressed into pellets at 80,000 psi. The pellets were vacuum-sealed in pyrex ampoules and then sintered for 3 days at 550°C after an initial heating at 450°C for a few hours. The pellets were then cooled, polished with 3/0 emery paper, rinsed in acetone, and stored. The material had the characteristic brassy color of chalcopyrite and was shown by X-ray diffraction to be CuFeS2. Microscopic examination of the polished surfaces revealed small inclusions of pyrite (approximately 0.5 vol pct) as the only impurity. The presence of small amounts of a second iron compound will not alter the amount of dissolved copper but might increase the amount of ferrous ion slightly. It was calculated that dissolution of all of the pyrite and 100 mg of Cu (a typical value) would change the expected ferrous concentration by only 4 pct. Microscopic examination of a pellet after leaching revealed that the pyrite was not preferentially solubilized; only those pyrite grains at the surface were attacked. Hence, the pyrite is unlikely to alter the rate of copper dissolution. The chalcopyrite disks were about 1.7 mm thick and 27 mm in diam. They were about 80 pct of theoretical density, and for this reason their true reaction area was somewhat larger than the 5.8 sq cm area presented by the polished face. The disks were cemented to lucite cylinders in such a way that only the polished face was exposed. The disks were then leached by methods previously described.6,7 RESULTS AND DISCUSSION Stoichiometry and Kinetics. The initial experiments were directed to the problem of resolving the stoichiometry of the leaching reaction. Disks of CuFeS2 were leached at 80°C for various periods of time in acidified ferric sulfate solutions that were protected from oxidation by a cover of flowing nitrogen. When the disks had been partly leached, they were removed, their soluble salts were washed out, and then they were treated with CS2 in a Soxhlet extraction apparatus. The ratio of elemental sulfur to dissolved copper thus obtained was approximately 2 to 1. After the extraction of elemental sulfur from the pellet, the residue consisted of unreacted chalcopyrite only. For runs in which an appreciable amount of copper was dissolved, the ratio of ferrous ion to cupric ion in the solution was
Citation
APA:
(1970) Part V – May 1969 - Papers - The Kinetics of Dissolution of Synthetic Chalcopyrite in Aqueous Acidic Ferric Sulfate SolutionsMLA: Part V – May 1969 - Papers - The Kinetics of Dissolution of Synthetic Chalcopyrite in Aqueous Acidic Ferric Sulfate Solutions. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.