PART V - Papers - Electromigration of Cadmium and Indium in Liquid Bismuth

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1266 KB
- Publication Date:
- Jan 1, 1968
Abstract
Using the capillary-reservoir technique, electromi-gvation rates of cadmium and indium in liquid bismuth were measured at several temperatures. The electric mobility of cadmium Jrom 305° to 535°C and indium from 310° to 595°C can be expressed as a function of temperature by the equations UIn = 1.52 x 10-3 exp sq caz per v-sec Migraion of both solutes was cathode-divected at a rate rnore than four tiMes tHAt previously found for siluer in liquid bisnmth. The electric mobilities of cadmium and indiulrz in liquid bismuth at 500° C are nearly identical with their respective mobilities in mercury at room temperature. AS part of a systematic study of the variables which are considered to control electromigration in liquid metals, the electromigration rates of cadmium and indium in liquid bismuth have been measured. Mass transport properties of silver in liquid bismuth have been reported previously,' and measurements of tin and antimony in liquid bismuth are forthcoming. Comparisons will be made with literature values for these same solutes in mercury.2'3 This series of solutes was selected to determine the effect of the solute valence on its electromigration. Silver, cadmium, indium, tin, and antimony have nearly equal atomic masses but have chemical valences ranging from +1 to +5. They are all fairly soluble in bismuth above 300°C and all have radioactive isotopes, which are an aid in making analyses. EXPERIMENTAL TECHNIQUE Electromigration of cadmium and indium in liquid bismuth was measured by the modified capillary-reservoir technique previously described.' In this method irradiated cadmium or indium is added to bismuth to form alloys containing about 1 wt pct solute (<2 at. pct solute). Several quartz or Pyrex capillaries: 1 mm ID and 5 cm long, vertically oriented, are simultaneously filled in the reservoir of the liquid alloy. A direct current is passed through two of the capillaries, which contain tungsten electrodes sealed in the upper end. The other capillaries sample the reservoir during the experiment. After a measured time interval the capillaries are removed from the reservoir and rapidly cooled. The glass is then broken away from the solidi- fied alloy, which is then weighed, dissolved in acid, and analyzed for solute content by chemical and radiochem-ical techniques. An electric mobility (velocity per unit field) can be calculated from the amount of solute entering or leaving each capillary by the simplified expression1 in which Ui is the electric mobility of the solute, ?mi the solute weight change, Ci the solute concentration of the reservoir, I the current, p the alloy resistivity, and l the duration of the experiment. This expression is valid as long as the experiment is terminated before a concentration gradient develops across the capillary orifice. Earlier experiments showed that the concentration gradient formed initially at the electrode changes with time and eventually reaches the orifice, due to back-diffusion. This condition produces a solute exchange between capillary and reservoir by diffusion or convection, opposing the electromigration, which results in a lower measured value for the electric mobility. To determine if the concentration gradient had reached the orifice, the capillaries used in some of the experiments were sectioned at 1-cm intervals and the solute content of the alloy from each section was radiochemically determined. A typical concentration profile for an experiment with indium in bismuth is shown in Fig. 1; cadmium in bismuth showed similar behavior. As illustrated in the graph, very little back-diffusion has occurred in the capillary containing the cathode, since the concentration gradient is confined to the upper 1 cm of the capillary. In the capillary containing the anode, however, the concentration gradient is much broader, extending nearly to the orifice, even though the net change in solute concentration is nearlv the same in both capillaries. Since cadmium and indium probably lower the density of bismuth when alloyed, depletion of the solute from the alloy adjacent to the anode would increase the density of the liquid in the uppermost region of the capillary. This would give rise to convective mixing within the capillary, causing the broadened concentration gradient. Conversely, the alloy adjacent to the cathode should have a reduced density as the solute concentration is increased by migration, explaining the "normal" concentration profiles found in these capillaries. This disparity was not found for electromigration of silver in bismuth. Both metals have similar densities at the operating temperatures, and nearly symmetrical concentration profiles were found in the two capillaries of each exueriment. This density effect was also apparently encountered when an attempt was made to measure diffusion coefficients for indium in liquid bismuth by the same technique which was successfully used to measure diffusion of silver in bismuth.' Capillaries 1 mm ID and 2 cm
Citation
APA:
(1968) PART V - Papers - Electromigration of Cadmium and Indium in Liquid BismuthMLA: PART V - Papers - Electromigration of Cadmium and Indium in Liquid Bismuth. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.