PART V - Papers - Preferred Transformation in Strain-Hardened Austenite

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1920 KB
- Publication Date:
- Jan 1, 1968
Abstract
A 0.3 pct C-12 pct Cr-6 pct Ni steel was rolled to 93 pct reduclion in area as austenite at 510°C, and then partially transformed as desired to ~rlartensite by qnenching to - 196°C. Pole figures for the austenitic matrix and for the martensitic product were separately determined by an X-ray transmission method. The deforitration texture of' the warm-worked austenite is characlerized by (110)(225) components, and is thus closely similar to those produced in a brasses. The pole jigure of the martensite in partially transformed material agrees well with that which can be constructed by transfortnation of the {110)(225) orientations according to either the Kuvdjuniov- Sacks or the Nishi-yatuu relatiotship. Howeuer, an important result of this construction is that me-third of the predicted orientations are missing. A graphical analysis can then be used to show that in deformed austenite certain crystallographic variants of martensite (related to the most probable austenite slip systems) are suppressed, resulting in this preferred transformation. The evidence for preferred transformation is corroborated by the measured elastic anisotropy of warm-rolled and fully transformed H-11 steel. EXTENSIVE plastic deformation of a polycrystal-line aggregate in a manner that causes flow predominantly in one direction results in a preferred orientation of the constituent crystallites. The particular orientations that are produced depend upon the crystal structure and composition of the material, as well as upon the temperature, mode, and degree of deformation; in any case, the preferred crystallo-graphic orientations, or textures, are reflected in directionality of mechanical properties. Although such anisotropy may be exploited in certain specialized applications, it is more commonly diminished or eliminated by heat treatment lest it interfere undesirably in subsequent forming operations or in structural design. In the recently developed thermomechanical treatments that significantly enhance the strength of some steels,1,2 considerable deformation of the metastable austenite prior to the martensite transformation is essential to the strengthening process. If the austenite is textured by the deformation, and if the transformation to martensite proceeds according to one of the relationships established for transformation in annealed austenite, then it must be expected that the martensite will also possess a preferred orientation even though the multiplicity of martensite orientations possible in a given austen- ite crystal will tend to restore some degree of randomness. The existence of a residual anisotropy, both mechanical 3-6 and crystallographic,' has been substantiated. In the latter crystallographic investigation, preferred orientations were determined for the martensitic structure of an SAE 4340 steel rolled 72 pct as austenite at 833°C and then quenched. However, the choice of a composition that transformed almost completely to martensite during the quench to room temperature did not permit direct measurement of the prior austenitic texture. In fact, when the "ideal orientations'' associated with well-known fcc rolling textures were converted, alone or in combination, to martensite according to the Kur-djumov-Sachs (K-s)' or Nishiyama8 relations, the agreement obtained with the observed martensite texture was only fair at best. Recently a pertinent aspect of the austenite to martensite transformation was reported by Bokros and parker,10 who found that certain habit-plane variants of martensite were suppressed by tensile deformation of Fe-31.7 Ni single crystals prior to the necessary subzero cooling. It might be anticipated that the consequences of such preferred transformation are sustained during the formation of martensite in warm-worked austenite that has a well-developed deformation texture. The present investigation was undertaken first to establish more firmly the relation between preferred orientations in plastically deformed austenite and in the resulting martensite, and second to examine the textures for evidence of deformation-induced preferred transformation. EXPERIMENTAL PROCEDURES An alloy containing 0.3 pct C, 12 pct Cr, 6 pct Ni, and the balance iron, was selected because the mar-tensite-start temperature (M,) of about -100°C allowed convenient experimental manipulation of either austenite or martensite at room temperature. Furthermore, this composition can be readily deformed as metastable austenite at moderately elevated temperatures without intervention of appreciable isothermal or athermal decomposition products. The alloy was austenitized at 1150°C, aircooled to 510°C, rolled unidirectionally at this temperature to 93 pct reduction of cross-sectional area, and finally oil-quenched to room temperature. Partial transformation to martensite was accomplished by quenching to -196°C as needed. The rolled stock was reduced in thickness from 0.067 to 0.010 in. by etching in a solution of 5 pct HC1, 45 pct HNO3, and 50 pct water, and further thinned by careful mechanical polishing to maintain the two sides of the sheet parallel within 0.0003 in. After mechanical polishing to 0.005 in., electropolishing in 1:9 perchloric-acetic acid solution produced a final thickness of 0.002 in. The preferred orientations were determined from
Citation
APA:
(1968) PART V - Papers - Preferred Transformation in Strain-Hardened AusteniteMLA: PART V - Papers - Preferred Transformation in Strain-Hardened Austenite. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.