Part VI – June 1968 - Papers - Microstrain Compression of Beryllium and Beryllium Alloy Single Crystals Parallel to the [0001]-Part I: Crystal Preparation and Microstrain Properties

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. J. London V. V. Damiano H. Conrad
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
717 KB
Publication Date:
Jan 1, 1969

Abstract

A method is described for producing single crystals of high-purity beryllium, Be-4.37pct Cu, and Be-5.24 pct Ni. These crystals were prepared for testing in compression parallel to the [0001] by orienting and lapping to within ±3' of arc of the (0001). Microstrain testing apparatus is described along with c axis compression results for ingot purity beryllium, twelve-zone-pass material, and the above-mentioned alloys. Results show no measurable plasticity for the ingot purity material from -196" to 400°C, although some surface traces of (1122) slip was observed at 200°C and above. The twelve-zone-pass material shows substantial microstrain plasticity at 220°C with slip on (1122). Both alloys show significant plasticity at room temperature and above with slip also on (1122) planes. THE two slip systems which normally operate during the plastic deformation of beryllium in the vicinity of room temperature are:' basal slip (0001)(1120) and prism slip . Pyramidal slip with a vector inclined to the basal plane has been reported for elevated temperatures,'-a but occurs near room temperature only at very high stresses.~ A summary of the available data on the effect of temperature on the critical resolved shear stress for slip on these systems has been compiled by Conrad and Perlmutter.~ It has been postulated6'7 that one of the principal factors contributing to the brittleness of poly crystalline beryllium at temperatures below about 200°C is the difficulty of operating pyramidal slip with a vector inclined to the basal plane. Hence, detailed information on the operation of such a slip system is important to understanding the brittleness of beryllium. The operation of pyramidal slip with a vector inclined to the basal plane is best accomplished in beryllium by compressing single crystals in a direction parallel to the c axis. In such a test the resolved macroscopic shear strzss on the basal and prism planes is zero and (1012) twinning which is favored by tension along the c axis does not occur. Hence, in c axis compression of beryllium the normal deformation modes are inhibited and the operation of pyramidal slip with a vector inclined to the basal plane is favored. In the present investigation, c axis compression tests were performed on beryllium single crystal as a function of temperature (77" to 700°K), purity (commercial and twelve zone pass), and alloy content (4.37 wt pct Cu and 5.24 wt pct Ni). Presented here is a description of the test techniques employed and the gross mechanical behavior observed. A detailed analysis of the slip traces developed on the surfaces of the deformed specimens during these tests and the results of electron transmission studies of the deformed crystals are given in a separate paper.B PROCEDURE 1) Materials and Preparation. Single crystals about 1 in. diam were prepared of the following materials: commercial-purity beryllium, high-purity beryllium, and two beryllium alloys, one with 4.37 wt pct Cu and the other with 5.24 wt pct Ni. The commercial-purity single crystals were obtained by cutting specimens from large-grained ingot of Pechiney SR material, which is approximately 99.98 pct pure. The high-purity crystals were prepared by floating-zone refining (twelve passes) a rod (7 in. by 1 in, diam) of Pechiney SR grade cast and extruded beryllium. Although an absolute chemical analysis of the zone-refined material was not established, mass spectro-graphic analysis, emission spectrographic analysis, and y activation analysis indicated that it contained in atomic fractions about 5 to 10 ppm each of carbon and oxygen, 1 to 5 ppm each of nickel and iron, and about 1 to 2 ppm of copper, with the remaining residual impurities being less than 1 ppm. Further indication of the purity of this material is provided by the critical resolved shear stress for basal slip, which was approximately 300 psi. The starting material for the alloy single crystals was 1-in.-diam floating-zone-refined (six passes) rod of Pechiney SR grade beryllium. Two such rods were wrapped respectively with sufficient weight of wire of high-purity copper (99.999 pct) or nickel (99.999 pct) to yield a 5 wt pct alloy. A seventh floating-zone pass was then applied to each of the rods to accomplish the initial alloying and an eighth pass for homogenization. Analytical samples were taken from regions of the rod immediately adjacent to where the mechanical test specimens were cut; these indicated 4.37 wt pct Cu and 5.24 wt pct Ni. 2) Crystal Orientation. To avoid the occurrence of basal slip during c axis compression testing, it is necessary to load the crystals as nearly parallel to the c axis as possible. Preliminary c axis compression tests indicated that plastic flow and/or fracture occurred at stresses of the order of 300,000 psi; hence on the basis of a critical resolved shear stress for basal slip of 300 to 400 psi, the maximum crystal misorientation permitted is about 4 to 5' of arc. Since this accuracy cannot be obtained using the usual back-
Citation

APA: G. J. London V. V. Damiano H. Conrad  (1969)  Part VI – June 1968 - Papers - Microstrain Compression of Beryllium and Beryllium Alloy Single Crystals Parallel to the [0001]-Part I: Crystal Preparation and Microstrain Properties

MLA: G. J. London V. V. Damiano H. Conrad Part VI – June 1968 - Papers - Microstrain Compression of Beryllium and Beryllium Alloy Single Crystals Parallel to the [0001]-Part I: Crystal Preparation and Microstrain Properties. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account