Part VI – June 1968 - Papers - Recrystallization and Texture Development in a Low-Carbon, Aluminum-Killed Steel

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. T. Michalak R. D. Schoone
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
12
File Size:
1406 KB
Publication Date:
Jan 1, 1969

Abstract

Recovery, recrystallization, and texture development of a cold-rolled aluminum-killed steel have been studied during simulated box annealing. Two different initial conditions existed prior to cold rolling: 1) essentially all of the nitrogen in solid solution and 2) most of the nitrogen precipitated as AlN. The combined effect of nitrogen and aluminum in solid solution before annealing was to inhibit recovery and sub-grain growth at temperatures above about 1000°F and to raise the recrystallization temperature range on continuous heating at 40°F per hr from 1000"-1050°F to 1065"-1085°F. For the material with nitrogen and aluminum initially in solution there was an inhibition in the nucleation of the (001) [110] texture component and an enhancement of the (111) [110] texture component. The differences in annealing behavior mzd texture development are attributed to preprecipitation clustering of aluminum and nitrogen at subboundary sites developed by prior cold working. THE annealing of cold-worked aluminum-killed steels has been the subject of numerous investigations.'-'2 These studies have been concerned with kinetics of recrystallization, with microstructure and texture development, and with the individual and combined effects of composition, thermal history prior to cold rolling, and heating rates during subsequent annealing. It has been shown that the inhibition of recrystallization, and the development of the pancake-shaped grain and recrystallization texture characteristic of aluminum-killed steels, can be associated with the precipitation of A1N particles during a recrystallization anneal involving heating rates in the range 20" to 80°F per hr. If the AIN is precipitated before cold rolling or if more rapid heating rates are employed, the cold-rolled steels recrystallize more rapidly to an equiaxed grain structure and texture comparable to that of rimmed low-carbon steel. The retardation of recrystallization, the development of the elongated grain structure, and the pronounced (111) texture have been attributed to: 1) precipitation of A1N at prior cold-worked grain boundaries to form a mechanical barrier to grain boundary migration;' 2) precipitation on the boundaries of the growing recrystal-lizing grains as well as on cold-worked grain boundaries;'" and 3) preprecipitation clustering or precipitation on subboundaries to retard recovery, nucleation, and growth. The present study was undertaken to study in more detail recrystallization and texture development during commercial box annealing of cold-rolled aluminum-killed steels. Comparison of the annealing be- havior after cold rolling, for two different conditions prior to cold rolling, was made in an attempt to define more clearly the role of aluminum and nitrogen in forming the recrystallization texture. A) MATERIAL AND PROCEDURE The material used in this investigation was a commercial low-carbon aluminum-killed steel which was hot-rolled with a finishing temperature of about 1565"F, then coiled at about 1020°F. The composition, in wt pct, was: 0.050 C, 0.30 Mn, 0.007 P, 0.019 Si, 0.03 Cu, 0.02 Ni, 0.02 Cr, 0.045 Al, and 0.004 N. Two 4.5 by 13 by 0.078 in. sections were cut from the center section of a hot-rolled panel and one of these was reheated to provide two different conditions prior to cold rolling: low AlN: as commercially hot-rolled, with aluminum and nitrogen in solid solution; and high AlN: as commercially hot-rolled, then reheated at 1300°F for 3.5 hr to precipitate most of the nitrogen as AlN. ~etallc&a~hic examination indicated that the reheating did not change grain size nor carbide distribution (some spheroidization of pearlite was noted). Texture analysis at half-thickness level showed that both sections had the same substantially random as-hot-rolled texture. The results of check chemical analysis of each sample are given in Table I. Both sections were cold-reduced 65 pct on a laboratory rolling mill to a final thickness of 0.027 in. Cold rolling, in one direction only, was in the direction of the prior hot rolling. Specimens 1.0 by 1.25 in. were cut from the cold-rolled sheets and given a simulated box anneal in an atmosphere of 2 pct HZ-98 pct He. Specimens were heated at a constant rate of 40°F per hr from room temperature to various temperatures in the range 750" to 1300°F and cooled immediately by withdrawal to the water-cooled end of a tube furnace. The temperature in the 6-in. uniform hot zone of the furnace was controlled within 3"F. Selection of the individual specimens was made to give a random distribution of annealing temperatures with respect to location in the cold-rolled sheet. At least two specimens of each condition were annealed to the same temperature and smaller specimens for light microscopy, transmission electron microscopy, and X-ray studies were prepared from each of these. Rolling-plane sections for each of these studies were taken at half thickness. Light microscopy and transmission electron micro-
Citation

APA: J. T. Michalak R. D. Schoone  (1969)  Part VI – June 1968 - Papers - Recrystallization and Texture Development in a Low-Carbon, Aluminum-Killed Steel

MLA: J. T. Michalak R. D. Schoone Part VI – June 1968 - Papers - Recrystallization and Texture Development in a Low-Carbon, Aluminum-Killed Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account