Part VI – June 1968 - Papers - The Structures of Faceted/Nonfaceted Eutectics

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 500 KB
- Publication Date:
- Jan 1, 1969
Abstract
A uariety of eutectic structures are formed in faceted/nonfaceted eutectics. The various structures are explained in terms of the absence or presence of small facets in the liquid groove. Regular structures are produced when, for purely geometric reasons facels cannot form. The presence of a facet in the liquid groove leads to the formation of an irregular or a cell-like complex regular structure, due to the relative immobility of the groove. A classification of eutectics was proposed by Hunt and jackson, based on the presence or absence of facets on the primary phases (the absence of facets may be predicted from the dimensionless entropy of melting2). Eutectics were divided into three groups: 1) eutectics in which both phases grow in a nonfaceted manner; 2) eutectics in which one phase grows faceted, the other nonfaceted; 3) eutectics in which both phases grow faceted. It was suggested that regular1 rodlike or lamellar structures1 should be formed in the first group, that irregular or complex regular structures1 should be formed in the' second, and that irregular structures1 should be formed in the third. Recently it has been shown that the structural classification is incomplete. Regular rodlike structures (InSb-NiSb eutectic3), or broken lamellar structure (Bi-Zn eutectic, Fig. 8), are formed in alloys of the second group when the faceted phase has a large volume fraction. Hunt and jackson' argued that regular structures could form in faceted/nonfaceted systems, but that such structures would be unstable in the presence of microfacets on the lamella of the faceting phase, because the growth rate at a point on such a facet would depend on the kinetic undercooling at the point of nu-cleation on the facet, and not on the local kinetic undercooling. In these circumstances it would not be possible to consistently balance the compositional and kinetic undercooling over a lamellar structure and thus obtain a stable isothermal interface. In this paper we discuss in detail the origin of the various structures formed in faceted/nonfaceted systems, pointing out that the most important factor promoting the formation of a regular structure is the absence of a facet in the liquid groove. 1) FACET FORMATION IN SINGLE-PHASE MATERIALS Facets form when there is an energy barrier for the addition of a new solid layer on an existing solid. When a barrier is present,2 growth proceeds by the lateral movement of steps across a crystallographic plane. The rate-controlling stage of the process occurs when the step is first formed. Hulme and Mullin6 have shown that faceting in single-phase materials can only occur when both interface curvatures are convex with respect to the solid and when the surface is tangential to the facet plane. When even one of the curvatures is concave a facet does not form because new layers of solid from adjacent regions can always feed the facet plane, Fig. 1. Growth under these conditions is then as easy as elsewhere. Similar considerations will apply to eutectic growth; consequently the shape of the faceted phase is extremely important. 2) LAMELLAR SPACING CHANGES IN EUTECTICS Jackson and Hunt7 have shown that the interface undercooling AT of a growing lamellar interface (neglecting kinetic undercooling) is related to the lamellar spacing, A, and growth velocity, v, by an expression of the form: where m, Ql, and nL are constants of the system given in Ref. 7. Eq. [I] is plotted for fixed v in Fig. 2. Jackson and Hunt postulate that a regular eutectic grows near, but to the right of the minimum in the AT vs A curve. They argue that the spacing cannot be to the left of the minimum because the interface is then unstable to fluctuations in A. It cannot grow too far to the right, because when the spacing becomes too wide an isothermal interface can no longer be maintained over the large-volume-fraction phase.7 It is argued that during any change in growth rate the lamellar spacing remains in the permitted range by the movement of lamellar faults. When the spacing is too wide, the fault, shown in Fig. 3, moves to the left; when the spacing is too narrow it moves to the right. The faults, however, have to be formed. heir formation has been shown to occur when local regions deviate considerably from the spacing defined by the lamellar When the spacing is locally too narrow (it passes to the left of the minimum, Fig. 2), pinching off of the narrow phase occurs. When the spacing is locally too wide, the interface on the large volume-fraction phase can no longer be maintained as an iso-
Citation
APA:
(1969) Part VI – June 1968 - Papers - The Structures of Faceted/Nonfaceted EutecticsMLA: Part VI – June 1968 - Papers - The Structures of Faceted/Nonfaceted Eutectics. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.