Part VI – June 1968 - Papers - Thermodynamics of the Erbium-Deuterium System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Charles E. Lundin
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
5
File Size:
354 KB
Publication Date:
Jan 1, 1969

Abstract

The character of the Er-D system was established by determining pressure-temperature-composition relationships. A Sieuerts&apos; apparatus was employed to make measurements in the temperature range, 473" to 1223"K, the composition range of erbium to ErD3, and the pressure range of 10~s to 760 Torr. The system is characterized by three homogeneous phase regions: the nzetal-rich, the dideuteride, and the trideuteride phases. These phases and their solubility boundaries were deduced from the family of isotherms of the system zchich relate the pressure-temperature-composition variables. The equilibrium plateau decomposition relationships in the two-phase regions were determined from can&apos;t Hoff plots to be: The differential heats of reaction in these two regions are AH = - 53.0 * 0.2 and -20.0 *0.1 kcal per mole of D2, respecticely. The differential entropies of reaction are AS = - 36.3 * 0.2 and - 31.0 * 0.2 cal per mole D2. deg, respectively. Relative partial molal and intepal thermodynamic quantities were calculated from the pure metal to the dideuteride phase. The study of the Er-D system was undertaken as a logical complement to an earlier study of the Er-H system.&apos; The primary interest was to compare the characteristics of the two systems and relate the difference to the isotopic effect. Studies of rare earth-deuterium systems by other investigators have been very limited in number and scope. Furthermore, there is even less information available wherein an investigator has systematically compared a binary rare earth-hydrogen system with the corresponding rare earth-deuterium system. The available information consists primarily of dissociation pressure measurements in the plateau pressure region of a few rare earths. Warf and Korst&apos; determined dissociation pressure relationships for the La- and Ce-D systems in the plateau region and several isotherms for each system in the dideuteride region. They compared these data with those of the corresponding hydrided systems. The study of these systems as a whole was very cursory and did not give sufficient data for a thorough comparison of the effect of the hydrogen vs the deuterium in the respective rare earths. The heat capacities and related thermodynamic functions of the intermediate phases, YH, and YD2, were determined by Flotow, Osborne, and Otto,~ and the investigation was again repeated for YH3 and YD3 by Flotow, Osborne, Otto, and Abraham.4 This investigation studied only these specific phases. Jones, Southall, and Goodhead5 surveyed the hydrides and deu-terides of a series of rare earths for thermal stability including erbium. They experimentally determined isotherms of selected hydrides and plateau dissociation pressures for deuterides. These data allowed comparison of the enthalpy and entropies of formation of the dihydrides and dideuterides. To date, no one rare earth has been selected to thoroughly establish the complete pressure-temperature-composition (PTC) relationships of binary solute additions of hydrogen and deuterium, respectively. The objective in this investigation was to provide the first comparison of a complete family of isotherms of a rare earth-deuterium system with those of a rare earth-hydrogen system. This would allow one to determine what differences exist, if any, in the various phase boundaries and the thermodynamic relationships in various regions of the systems. I) EXPERIMENTAL PROCEDURE A Sieverts&apos; apparatus was employed to conduct the experimental measurements. Briefly, it consisted of a source of pure deuterium, a precision gas-measuring buret, a heated reaction chamber, a mercury manometer, and two McLeod gages (a CVC, GMl00A and a CVC, GM110). Pure deuterium was obtained by passing deuterium through a heated Pd-Ag thimble. A 100-ml precision gas buret graduated to 0.1-ml divisions was used to measure and admit deuterium to the reaction chamber. The reaction unit consisted of a quartz tube surrounded by a nichrome-wound furnace. The furnace temperature was controlled by a recorder-controller to . An independent measurement of the sample temperature in the quartz tube was made by means of a chromel-alumel thermocouple situated outside, but adjacent to, the quartz tube near the specimen. Pressure in the manometer range was measured to k0.5 Torr and in the McLeod range (10~4 to 10 Torr) to *3 pct. The deuterium compositions in erbium were calculated in terms of deuterium-to-erbium atomic ratio. These compositions were estimated to be *0.01 D/Er ratio. The erbium metal was obtained from the Lunex Co. in the form of sponge. The metal was nuclear grade with a purity of 99.9+ pct. The oxygen content was reported to be 340 ppm and the nitrogen not detectable. Metallographically the structure was almost free of second phase (<i vol pct). A quantity of sponge was arc-melted for use as charge material. The solid material was compared with the sponge in the PTC relationships. They were found to be identical. Therefore, sponge material was used henceforth, so that equilibrium could be attained more rapidly. The specimen size was about 0.2 gr for each loading of the reaction chamber. The procedure employed to obtain the PTC data was to develop experimentally a family of isothermal curves of composition vs pressure. First, a specimen
Citation

APA: Charles E. Lundin  (1969)  Part VI – June 1968 - Papers - Thermodynamics of the Erbium-Deuterium System

MLA: Charles E. Lundin Part VI – June 1968 - Papers - Thermodynamics of the Erbium-Deuterium System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account