Part VI – June 1969 - Papers - Creep of a Dispersion Strengthened Columbium-Base Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1560 KB
- Publication Date:
- Jan 1, 1970
Abstract
The creep of 043 was studied over the temperature range 1650" to 3200°F and over the stress range 3000 to 44,000 psi. The steady-state creep rate over this range of stress and temperature can be expressed by the equation where A is a constant, is the stress, and is -0.8 x 103 psi-'. Over a narrow range of stress variations c0 a and for this proportionality n varies from 3 to 30 in accordance with the relation n = aB. Above about 2400° F, H, the apparent activation energy for creep, is 110,000 cal per mole, a value about equal to that estimated for self-diffusion in this alloy. Below 2400°F, H increases with decreasing temperature reaching a value of -125,000 cal per mole at 1700° F. In this temperature region, H appears to be a function of the interstitial concentration of the alloy. MOST of the detailed creep studies of dispersion strengthened metals have been concerned with metals having fcc structures. However, there are a number of important refractory alloys with bcc structures that derive part of their high temperature strength from an interstitial phase and whose creep behavior has not been well defined. This paper describes the creep behavior of the bcc alloy, D43, over the temperature range 1650" to 3200°F (0.4 to 0.7 Thm) and over the stress range 3000 to 44,000 psi. In addition to colum-bium, this alloy contains 10 pct W. 1 pct Zr, and sufficient carbon (-0.1 pct) to form a carbide dispersion throughout the matrix of the alloy. The effects of variations in temperature and stress on the steady-state creep rate of this alloy are presented in this paper. EXPERIMENTAL PROCEDURES Creep tests were made in a vacuum of 106 torr under constant tensile stress conditions using a Full-man-type lever arm.' Creep specimens were machined from 0.020-in. D43 sheet (grain size -5 x l0-4 in.) processed in a duplex condition (solution annealed -2900°F, 40 pct reduction in area, aged 2600°F). The specimens were tested in this condition without further heat treatment. Specimen extensions over 1-in. gage lengths were continuously recorded using a high temperature strain gage extensometer. Differential temperature and stress measurements were used to determine temperature and stress dependencies of the creep rate. Activation energies were calculated from the changes in strain rate induced by abrupt shifts in the temperature during constant stress creep tests. The 100°F temperature shifts used in most of the activation energy determinations required 15 to 90 sec depending upon the temperature at which the shift was made. The dependence of strain rate on stress was determined by measuring the change in strain rate for incremental stress reductions during constant temperature tests. It has been shown that columbium-base alloys such as D43 are susceptible to contamination by gaseous interstitial elements during vacuum heat treatments.' In this regard, it is unlikely that these alloys can be heat treated without some loss or gain of interstitial elements despite the precautions taken to control the heat treating environment. However, several factors suggest that changes in interstitial concentrations of the specimens during testing did not affect the results presented in this paper. First, the dependence of the creep rate on the stress or temperature determined during the course of a single creep test showed no variations with the duration of the test. A variation would be expected if a loss or gain in interstitial concentration during the course of the test affected results. In addition, precautions taken during this investigation to minimize interstitial contamination by wrapping the gage lengths of the specimens with various foils2 (Mo, Ta, W) did not produce a detectable change in the stress and temperature dependencies relative to the unwrapped specimens. The averages of duplicate analyses for carbon and oxygen in several specimens determined before and after creep testing are listed in Table I. The combined nitrogen and hydrogen concentrations which were ordinarily less than 50 ppm did not change in a detectable way with creep testing. The analyses show that only minor changes in carbon concentration occurred during creep testing except for specimen 4. This specimen which was tested at 3100°F lost a significant amount of its carbon concentration to the vacuum environment. Specimen 1 gained 100 ppm of O, while specimens 2, 3, and 4, which were tested at progressively higher temperatures, lost increasing portions of their initial oxygen concentrations during testing. RESULTS AND DISCUSSION The Temperature Dependence of the Creep Rate. The apparent activation energy for creep, H, was de-rived from creep curves similar to that shown in Fig. 1. Steady-state creep was rapidly attained at the beginning of the test and with each change in temperature. This behavior suggests that the alloy rapidly attains a stable structure with each shift in temperature or that the structure is constant throughout the test. Since the dispersion will tend to stabilize the structure, the latter is probably the case. The activation energy was found to be independent of the direction of the temperature shift and the magnitude of the shift (50" or 100°F). Although H was approximately independent of the strain, there was a tendency for it
Citation
APA:
(1970) Part VI – June 1969 - Papers - Creep of a Dispersion Strengthened Columbium-Base AlloyMLA: Part VI – June 1969 - Papers - Creep of a Dispersion Strengthened Columbium-Base Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.