Part VI – June 1969 - Papers - The Effects of Solute Additions on the Stacking Fault Energy of a Nickel-Base Superalloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1112 KB
- Publication Date:
- Jan 1, 1970
Abstract
Stacking fault energy measurements of nickel-base alloys have been mainly confined to binary and ternary systems. In this paper, the stacking fault energy has been measured by the rolling texture method in a series of ten alloys which comprise successive additions of Cr, Mo, Fe, and C to pure nickel, eventually resulting in an alloy of the composition of Hastelloy alloy X. The alloys studied here are single-phase, solid solutions with the exception of two alloys in which some undissolved particles of "primary" carbide have been retained. It is found that successive additions of chromium, molybdenum, and iron all lower the stacking fault energy, with iron having only a minor effect. The stacking fault energy is found to increase when carbon is added in solid solution. The results from the rolling texture measurements are correlated with thin foil observations of dislocation substructures in these alloys. In a recent paper' it was pointed out that the dislocation substructure of various superalloy matrices could be classified into three broad categories based on 'high', 'medium', and 'low' stacking fault energy. It has also been demonstrated2 that the dislocation substructure in each of these categories has a well defined role in the nucleation of strengthening precipitates which is different from the role played by the dislocation substructure in other categories. Thus, it becomes desirable to understand the influence of various solute elements on the stacking fault energy and hence on the dislocation substructure of the matrix, before any further development of superalloys by mi-crostructural predesign can be undertaken. Recently, Beeston and France have studied the influence of increasing solute additions on the stacking fault energy of a series of binary nickel-base alloys relevant to the Nimonic series using the rolling texture method, and have then estimated the effect of a given alloy addition in five commercial Nimonic alloys. However, comparison with stacking fault energy data from other investigations''5 suggests that the influence of a given solute element in a nickel-base binary system is not necessarily the same in a ternary or more complex superalloy system. Accordingly, the present work was undertaken to study the effect of successive addition of solute elements to pure nickel, the final composition being the nominal composition of Hastelloy X. The rolling texture method of stacking fault energy measurement was used since it can be used for the whole range of stacking fault energy values and does not have the disadvantage of, say, the Node method which is only applicable to low values of stacking fault energy. In addition, the rolling texture method provides a means of determining the stacking fault energy which is statistically more significant than that provided by other methods. EXPERIMENTAL TECHNIQUES Button heats of alloys of the compositions shown in Table I were prepared. Each button was remelted not less than four times. After a slight deformation (approximately 5 pct) all alloys were homogenized at 2200°F except alloys, H . I, and J. Alloys H and I were solution heat treated at 2150°F and alloy J at 2282OF. The buttons were cold worked by rolling, using "end-to-end" passes and intermediate anneals at the homogenization temperatures mentioned above. After each annealing treatment the samples were rapidly water quenched to avoid any precipitation. In alloys F and I, however, a few particles of "primary" carbides were retained even after the homogenization treatments at the temperatures mentioned above. Part of the solution heat treated material was cold worked to 0.04-in.-thick sheet and the penultimate reduction was -50 pct of deformation as recommended by Dillamore et al. All annealing was carried out in vacuo within sealed quartz capsules. Some of the material from each alloy was rolled down further to 0.004 in. strip for thin foil transmission electron microscopy specimens. Specimens of this strip were annealed at the homogenization temperature for 1 hr and then strained 7 pct by rolling at room temperature. Thin foils were prepared from the strip specimens by the 'window" technique using an Ethanol-Perchloric acid electrolyte at 32°F and a voltage of 22 v. Stainless steel cathodes were employed. All transmission electron microscopy was performed in a JEM-7 electron microscope using an accelerating voltage of 100 kv. Specimens from the 0.04 in. sheet which had been rolled -60 pct in the final pass were electropolished to remove the surface layers to a depth of approximately 0.002 in. Rolling texture pole figures for all the alloys were determined using a Schulz ring and nickel filtered CuKa radiation at 50 kv and 20 ma. The texture parameter Io/(lo + I,,) (where Io is the
Citation
APA:
(1970) Part VI – June 1969 - Papers - The Effects of Solute Additions on the Stacking Fault Energy of a Nickel-Base SuperalloyMLA: Part VI – June 1969 - Papers - The Effects of Solute Additions on the Stacking Fault Energy of a Nickel-Base Superalloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.