PART VI - On the Thermodynamic Properties of the Tellurides of Cadmium, Indium, Tin, and Lead

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 1289 KB
- Publication Date:
- Jan 1, 1967
Abstract
The heats oj formation at 273°K of the compounds CdTe, I)z2Te, InTe, In2Te3. In2Te5, SrzTe, and PbTe have been rleasrred in a liquid metal solutiotz caloritrete? 1.t1itlz bismuth as solvent. The?, are iterpretecl in yelation to tlze stability and bonding of the cott/pozltzds. Tile heats of fusion atzd the melting- points of tlze cotlzpounds InTe and Itzz,Te3 1lcti.e been measured in a cotrslant-temperature gradient calorimeter. The entropies of fusion are disc,ztssecl in YIIIS 01. the degree of order in the solid at the melting point. THE heats of formation of the tellurides of cadmium, indium, tin, and lead have been measured as a continuation of research on the thermodynamic properties of compounds of tellurim.' The tellurides of these metals were selected with a view to examining the relation between the heat of formation and the position of the metal in the periodic system. The elements cadmium, indium, and tin are in the same period and tin and lead are in the same group of the periodic system. The tellurides of indium are of special interest because four compounds, In2Te, InTe, In2Te3, and InzTe5, occur in this system. The available information on the heats of formation of the compounds investigated consists of values for CdTe, SnTe, and PbTe derived from electromotive-force measurements,J a value for CdTe obtained by tin solution alorimetr, and values for InTe and In2Te3 determined by combustion calorimetry.5 These values, however, refer to various temperatures ranging from 273' to 673°K and some of the reported error limits are large. Liquid metal solution calorime-try may be expected to yield more accurate values for the heats of formation than electromotive-force measurements or combustion calorimetry. The heats of fusion and the melting points of the compounds InTe and In,Te3 were determined in a constant-temperature gradient calorimeter. No published information appears to be available on the heat of fusion of these compounds. The results reported here give an indication of the degree of order in the solid compounds at the melting point. 1) MATERIALS AND EXPERIMENTAL PROCEDURE Materials. Samples of the compounds SnTe and PbTe were obtained from the Westinghouse Research Laboratories and samples of the compound InTe from Lincoln Laboratory, Massachusetts Institute of Tech- nology. Additional samples of the compounds InTe, SnTe, and PbTe and samples of CdTe, In2Te, In2Te3, and In,Tes were prepared from 99.995 pct Cd (Baker Chemical CO.), 99.999+ pct In (American Smelting and Refining Co.), 99.99 pct Sn (Baker Chemical Co.), 99.999+ pct Pb (Fisher Scientific Co.), and 99.999+ pct Te (American Smelting and Refining Co.). Stoichiometric amounts of the component elements were melted in sealed, evacuated Vycor tubes. The melts were held at approximately 100°C above the liquidus for about 16 hr and shaken repeatedly. The melts of the compounds In2Te and InzTe5, which form by peritectic reactions, were quenched into iced water. The melts of the other compounds, which have congruent melting points, were slowly cooled to room temperature. The samples were then annealed for 5 days at approximately 50°C below their respective solidus temperatures. Metallographic examination did not reveal any evidence of second phases or segregation. At least two batches of each compound were prepared. Samples from each batch were used in determining the heats of formation and, in the cases of InTe and In,Te3, the heats of fusion. The Heats of Formation. The heats of formation at 273°K of the compounds were measured by metal solution calorimetry with liquid bismuth at 623" as solvent. In this technique, the heat of formation is determined from the measured heat effects on dissolution of the compound and of a mechanical mixture of the component elements. The difference between these heat effects adjusted for changes in the composition of the bath gives the heat of formation at the temperature from which the samples are added to the bath (273°K). The experimental technique and method of calculation have been described in detail elsewhere.= It should be emphasized that the reported heats of formation depend on the thermodynamic data used in calculating the heat effects for the calibration additions. In the present investigation, the calorimeter was calibrated by adding pure bismuth at 273°K to the bismuth bath at 623°K. The reported heats of formation are based on a value of 4.96 kcal per g-atom for the difference in the heat contents of bismuth at 623" and 273". If a new value for this quantity becomes available, the reported results may be adjusted in direct proportion. The concentration of solute in the bath at the end of a calorimetric run did not exceed 1.7 at. pct and was usually less. In this range, the heat effect on dissolution of the solute was a linear function of the concentration of solute. In determining the heats of formation of the compounds in the system In-Te, a few runs were carried out in which two neighboring compounds such as InTe and In,Te3 and the corresponding mechanical mixtures of the components were added to the calorimeter. The
Citation
APA:
(1967) PART VI - On the Thermodynamic Properties of the Tellurides of Cadmium, Indium, Tin, and LeadMLA: PART VI - On the Thermodynamic Properties of the Tellurides of Cadmium, Indium, Tin, and Lead. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.