PART VI - Papers - Thermodynamic Properties of Liquid Magnesium-Silicon Alloys; Discussion of the Mg-Group IVB Systems

The American Institute of Mining, Metallurgical, and Petroleum Engineers
J. M. Eldridge E. Miller K. L. Komarek
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
7
File Size:
2059 KB
Publication Date:
Jan 1, 1968

Abstract

Aclivilies of magnesium in liquid Alg-Si alloys have been delermined between 5 and 60 at. pcl Si, close to the melling point of Mg2Si, by an improved isopieslic melhod. Silicon specinrens, held in alumina crucibles and graplrile conlainevs of special design, were healed in a letrlpevalure gvadient and equilibrated with mag-nesilcrrl rapor in a closed lilanium system. The ther-madynamic Junctions were calculated and compared with the thermodyuamic properties of the other three mg- Gvoup IVB systems. Lattice paramelers of three Mg2X compounds were measured. The bonding in the Mg2X compounds is largely covalent with small and uarying amounts of metallic and ionic conlvibutions. The Mg-Si phase diagram1 has one congruent melting compound, Mg2Si, of essentially stoichiometric composition, two eutectics, and very limited terminal solid solubilities. Little information is available on the thermodynamic properties of this system. The free energy of formation of Mg2Si has been determined by the Knudsen cell technique2 in the range 572" to 680oC, by the transportation method3 between 858" and 950oC, and by the electromotive-force method4 in the range 400o to 600°C. Kubaschewski and villa5 and caulfield6 have measured the heat of formation of Mg2Si. An electromotive-force study of magnesium-rich liquid alloys was recently published by Sryvalin el al.7 The present investigation was undertaken to complete a general survey of the thermodynamic properties of the homologous series of Mg-Group IVB systems, i.e., Mg-Pb,a9,Mg-Sn,10,11 mg-Ge,12and Mg-Si. An isopiestic technique, previously developed for similar measurements on liquid Mg-sn11 and Mg-Ge alloys,12 was modified for the Mg-Si system. Specimens of the nonvolatile component, silicon, were contained in dense alumina crucibles placed inside covered graphite crucibles which were heated in a temperature gradient in an evacuated and sealed titanium reaction tube and equilibrated with magnesium vapor of known vapor pressure. The alumina crucibles prevented contact between the highly corrosive liquid Mg-Si alloys and graphite. The graphite cruci- bles effectively preserved the high-temperature equilibrium composition of the liquid alloys containing highly volatile magnesium on termination of the experiments during the quench to room temperature. EXPERIMENTAL PROCEDURE Silicon of semiconductor-grade purity (E. I. du Pont de Nemours and Co., Brevard, N.C.) and 99.99+ pct Mg (Dominion Magnesium Ltd., Toronto, Canada) were used. Graphite crucibles with press-fitted lids were machined from high-density (1.92 g per cu cm) rods (Basic Carbon Corp., Sanborn, N.Y.) which had a maximum ash content of less than 0.04 pct. The alumina crucibles had a purity of 99.7+ pct (Triangle RR grade, Morganite, Inc., Long Island City, N.Y.). In preliminary runs the liquid alloys were contained in graphite crucibles following the exact procedure developed for the Mg-Ge system.'2 These runs failed due to appreciable reaction between the molten Mg-Si alloys and graphite, and the results have been discarded. The procedure was then modified and the Mg-Si alloys were subsequently held in alumina crucibles. For most of the runs alumina crucibles of known weight and approximately 6.3 mm ID, 12.5 mm height, 1.0 mm wall thickness were loaded with weighed amounts of silicon and encapsuled in tightly covered weighed graphite crucibles 5/16 in. ID, 2 in. helght, 3/32 in. wall thickness). The graphite crucibles were machined from rods which were 85 pct of the theoretical density. These crucibles were therefore sufficiently porous so as to permit magnesium vapor to effuse through the silicon under the experimental conditions of approximately 970O to 1220°C and 1 day equilibration time. However, negligible magnesium was lost from the crucible during the quench due to the slow effusion rate through the pores of the graphite. The inner alumina crucible prevented the liquid alloys from contacting the graphite, and the very tightly fitting graphite crucible lids served to retain any magnesium vaporizing from the alloys inside the crucibles during the quenching step.12 The loaded silicon-alumina-graphite cells were positioned, one above another, on a 16-in.-long titanium thermocouple well and tied securely to the titanium tube with thin molybdenum wires held in grooves around the circumference of the graphite crucibles. A thin (0.005-in.) molybdenum strip prevented contact between the graphite crucibles and the titanium. This assembly was lowered into a titanium reaction tube (la in. ID, 16 in. long, $ in. wall thickness) closed on one end which contained a 11/2-in.-long cylinder of magnesium at the bottom. The inner titanium thermocouple well was positioned eccentrically in the large tube because of the eccentric mounting of the cells on the well. Appropriate modifications of the titanium cap"'12 were made to join the inner and outer titanium
Citation

APA: J. M. Eldridge E. Miller K. L. Komarek  (1968)  PART VI - Papers - Thermodynamic Properties of Liquid Magnesium-Silicon Alloys; Discussion of the Mg-Group IVB Systems

MLA: J. M. Eldridge E. Miller K. L. Komarek PART VI - Papers - Thermodynamic Properties of Liquid Magnesium-Silicon Alloys; Discussion of the Mg-Group IVB Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account