Part VII – July 1968 – Communications - Dependence of Texture on Processing Conditions in Extruded Aluminum Wires

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. Bonefacic D. Kunstelj M. Stubicar A. Tonejc
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
1
File Size:
88 KB
Publication Date:
Jan 1, 1969

Abstract

A. Bonefafcic, D. Kunsfeli, M. Stubicar, and A. Tonejc The present communication is concerned with the variation of the texture in aluminum wires with die angle and temperature, at constant speed of extrusion. Experiments were carried out concurrently on refined samples, with a stated purity of 99.997 pct pure A1 and commercial samples of 99.5 pct Al. Ingots of refined aluminum samples were machined to 30-mm-diam by 150-mm-long billets. These billets were transformed to 5-mm-diam wires by drawing. The final form, suitable for examination, was obtained by extrusion through conical-face dies with a 1-mm hole diam and extrusion ratio 5:l in diam. The initial form of the commercial aluminum samples was drawn wire 5 mm in diam. These samples showed a poorly defined texture with (111) as a major and (001) as a minor component. A similar defined texture appeared in the refined aluminum samples after drawing to 5 mm diam. Conical-face dies with different angles (defined by the axis and the generating line of the cone) were used in our experiments. The values of the angles were 27, 35, 45, 57, 63, and 90 deg. The extrusion container was fitted with a heating element and controller permitting temperatures up to 600°C to be maintained within i5"C. Extrusion was performed at 250°, 300°, 350°, 400°, and 500°C at constant speed (approximately 1 mm per sec) and constant die reduction. The extrusion product was a wire 1 mm in diam and approximately 20 cm long. In order to remove the surface layer with the "conical" texture and to reduce the absorption by the X-ray examination of the samples, the extruded wire was etched to 0.22 mm in diam. Experiments were performed in the middle sections of the 20-cm-long wires. In addition to the die of l-mm hole diam, dies with a 1.5-, 0.7-, 0.6-, 0.5-, and 0.4-mm hole diam and 63-deg die angle were constructed. In our experiments we did not find in these ranges any important difference concerning the texture of the extruded wires and we continued our work solely on the 1.0-mm die. The diffracted X-rays (Cu K radiation) were recorded photographically. Diffracted intensities were measured on the (111) reflection with a microphotometer. The relative amounts of texture components were determined from the areas under the diffracted maxima. We found the texture of extruded aluminum wires to be strongly influenced not only by the temperature of extrusion and the purity of the sample but also by the form of the die. It is generally admitted that cold-drawn aluminum wires have mainly a (111) texture with a small amount of (001) component, Table I of Ref. 1. In our experiments with wires extruded in conditions represented by Fig. 1, in some cases a single (001) texture was obtained. If these wires were drawn repeatedly at room temperature, X-ray measurements revealed a duplex (001)-(111) fiber texture. Further drawings increased the (111) and decreased the (001) texture component. In Fig. 1 the percentage of material oriented with (001) parallel to the extrusion direction is represented as a function of the temperature and the die angle (a), for commercial and refined aluminum samples, respectively. From these diagrams we may draw the following conclusions. The slope of the die (a) influenced more strongly the texture at the lower rather than the higher temperatures. Again, a stronger influence was found in the case of the commercial in comparison with refined aluminum samples. In the case of the commercial aluminum samples the amount of material with (001) texture increases with increasing wire temperature in an approximately linear manner. This effect is less pronounced in the pure aluminum samples, with the exception of the die with a = 45 deg. In this case the (001) texture decreases with increasing temperature, as shown in Fig. 1. Component (001) is more pronounced in higher-purity aluminum samples. Our experiments led to the conclusion that both (001) and (111) components are essentially stable in extruded aluminum wires. As we obtained a single (001) texture starting with a sample of drawn wire in which the (001) component was very weak, our experiments revealed that the (001) component is not a remnant of the initial texture; this is in disagreement with the findings of Vandermeer and McHargue.1 We gratefully acknowledge discussions with Professor M. Paic. 1 R. A. Vandermeer and C. J. McHargue: Trans. 7MS-AME, 1964, vol. 230, p. 667.
Citation

APA: A. Bonefacic D. Kunstelj M. Stubicar A. Tonejc  (1969)  Part VII – July 1968 – Communications - Dependence of Texture on Processing Conditions in Extruded Aluminum Wires

MLA: A. Bonefacic D. Kunstelj M. Stubicar A. Tonejc Part VII – July 1968 – Communications - Dependence of Texture on Processing Conditions in Extruded Aluminum Wires. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account