Part VII – July 1968 - Papers - A Study of the Effects of Ultrasonics on Diffusion

The American Institute of Mining, Metallurgical, and Petroleum Engineers
O. F. Walker V. A. Johnson W. C. Hahn J. D. Wood
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
3
File Size:
193 KB
Publication Date:
Jan 1, 1969

Abstract

The diffusion coefficients of zinc in single-crystal zinc and carbon in single-crystal and poly crystalline nickel were measured by means of radioactive tracer techniques both with and without the application of ultrasonic vibrations under conditions such that the temperature of the sample was closely controlled. The results of this investigation indicate no enhancement of diffusion in any of the samples. It is suggested that previously reported enhancement may have been due either solely to temperature increases caused by ultrasonic vibrations or in combination with changes in the boundary conditions. A number of observations have been reported in the literature in which it has been implied or inferred that the application of ultrasonics enhances diffusion (see, for example, Refs. 1-5). The present study was undertaken in an attempt to observe this effect under carefully controlled conditions, particularly with regard to measurement and control of the temperature of the sample. Two different types of systems were studied; these were the self-diffusion of zinc and the diffusion of carbon in nickel. EXPERIMENTAL For diffusion with ultrasonic energy applied, the samples were included as part of a resonant ultrasonic system operating at 58.5 kcps. The ultrasonic generators used were rated at 100 and 250 w and could be tuned over a frequency from 10 to 100 kc. A PZT (lead titanate/lead zirconate) ceramic transducer provided the driving vibration. This system requires no metallurgical joining of the specimen to the acoustical transmission line since the ultrasonic driver and the follow-up section clamp the specimen in position by means of a constant pressure of 50 lb developed by an air cylinder. The ultrasonic driver and follow-up section, both made of titanium, were 4 in. in length from clamping point to the end in contact with the specimen. Using the relationship given by Mason,6 A = V/f, the resonant wavelength, A, in titanium is calculated to be 3.3 in. at a frequency, f, of 58.5 kc, taking the velocity of sound in titanium, V, as 1.95 X 105 in. per sec. The 4-in. driver and follow-up section, therefore, are each 4.0/3.3 =1.21 times the resonant wavelength. Clamping pressure must be applied at stress nodes of the transmission line in order to preserve resonance. Therefore, a specimen length of 0.58 times the wavelength in the specimen was required to place the clamping pressure application points at stress nodes exactly three wavelengths apart. A stress antinode was contained in the center 3 in. of the specimen. A small PZT ceramic disc attached to the follow-up section provided an output voltage proportional to the intensity of the standing wave. This output voltage was monitored on an oscilloscope and the ultrasonic system was tuned to resonance by varying the frequency until the output signal was a maximum amplitude. The amplitude of the output signal was maintained constant throughout the diffusion anneal. A split cylindrical stainless-steel chamber, which was purged with argon prior to and during the runs, was placed around the specimen. The chamber in turn was surrounded by a movable furnace whose temperature could be controlled to 7C. Heat exchangers were used to cool the driver, follow-up section, and ultrasonic transducer. Great care was taken to obtain the true specimen temperature in all cases. Several different methods were tried; the most successful was that in which the thermocouple was held in contact with the midlength of the specimen by means of an asbestos insulating pad and wire straps. In the case of zinc, single-crystal specimens of 99.999 pct purity were used. The samples were 0.25 by 0.25 in. square and of the proper length for resonance, that is 1.1 in. long with the c axis parallel to the long dimension of the specimen for the case of diffusion perpendicular to the c axis and ultrasonic motion parallel to the c axis, and 1.9 in. long with the c axis perpendicular to the long dimension of the specimen for the case of diffusion parallel to the c axis and ultrasonic motion perpendicular to the c axis. In each case, one of the rectangular faces was electroplated with a thin film of zinc containing Zn The constant pressure used to clamp the specimen in place in the ultrasonic system caused some deformation in some of the samples. For these samples the deformation was concentrated in either end of the specimen; thus, for all samples (both zinc and nickel) the center in. was cut from the specimen after the diffusion anneal to be used for sectioning and counting. The nickel single-crystal samples, of 99.999 pct purity, were used in the form of rods 0.25 by 0.187 by 2.07 in. long with the (100) direction parallel to the rod axis. The polycrystalline nickel samples of 99.97 pct purity had an average grain diameter of 0.007 in. and were used in the form of rods 0.25 by 0.125 by 1.87 in. long. The direction of ultrasonic motion was parallel to (100) direction (bar axis) for the single-cqstal samples and parallel to the bar axis for the polycrystalline specimens. A thin film of c14 suspended in methanol was applied to the diffusing face of the specimen. Two specimens were butted together lengthwise for each diffusion anneal to minimize oxidation. After diffusion, a precision lapping device similar to the one described by Goldstein7 and a radiation detector were used to obtain a plot of specific activity vs penetration distance for each specimen. (A scintil-
Citation

APA: O. F. Walker V. A. Johnson W. C. Hahn J. D. Wood  (1969)  Part VII – July 1968 - Papers - A Study of the Effects of Ultrasonics on Diffusion

MLA: O. F. Walker V. A. Johnson W. C. Hahn J. D. Wood Part VII – July 1968 - Papers - A Study of the Effects of Ultrasonics on Diffusion. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account