Part VII – July 1968 - Papers - Grain Boundary Penetration and Embrittlement of Nickel Bicrystals by Bismuth

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 788 KB
- Publication Date:
- Jan 1, 1969
Abstract
The kinetics of the inter granular penetration and embrittlement of [100] tilt boundaries in 99.998 pct pure nickel upon exposure to bismuth-rich Ni-Bi liquids have been determined in the temperature range from 700° to 900°C. The kinetics of penetration are parabolic in time at constant temperature over most of the temperature range. In a series of 43-deg bicrystals the rate of penetration is anisotropic with respect to the direction of penetration into the grain boundaries. In lower-angle bicrystals the penetration rate is isotropic. The rate of penetration decreases with tilt angle at 700°C. The activation energy for penetration in the 43-deg bicrystals is 42 kcal per g-atom independent of direction. It is concluded that the intergranular penetration and embrittlement in the presence of the liquid proceeds by a grain boundary diffusion process and not by the intrusion of a liquid film. This was confirmed by a determination that the kinetics of penetration and embrittlement were the same in the 43-deg bicrystals upon exposure to bismuth vapor under conditions such that no bulk liquid phase would be thermodynamically stable. WhEN solid metals are exposed to a corrosive liquid-metal environment, the grain boundaries are sites of preferential attack. Depending on the temperature, the composition of the liquid, and the composition, structure, and state of stress of the solid, a number of modes of attack are possible. This paper reports a study of the kinetics of intergranular penetration and embrittlement of high-purity nickel bicrystals upon exposure to bismuth which, together with an earlier study by Cheney, Hochgraf, and Spencer,' demonstrates that there are at least two modes of intergranular attack possible in the Ni-Bi system. In the study by Cheney et al., columnar-grain specimens of 99.5 pct pure nickel were exposed to liquid bismuth presaturated with nickel in the temperature range 670" to 1050°C. They found that the majority of the boundaries, which were predominantely high-angle boundaries, were penetrated by capillary liquid films, the attack proceeding by a process which will be termed grain boundary wetting. This process occurs in a stress-free solid when twice the liquid-solid surface tension is less than the surface tension of the grain boundary,* i.e., when 2yLs < YGB In this case the penetration of the grain boundary by the liquid occurs at a relatively rapid rate, resulting in the severe embrittlement of a polycrystalline solid. Grain boundary wetting is a common mode of intergranular attack in systems in which the lower melting component is relatively insoluble in the solid, but the solid has an appreciable solubility in the liquid, for example, the Ni-Bi system, Fig. 1. In systems of this type at temperatures above the range of stability of any intermetallic phases, once the liquid is saturated with respect to the solid so that no gross solution occurs, chemical gradients are small, and surface tensions become major driving forces for attack, provided the solid is stress-free. The results of Cheney et al. appear to be typical of those encountered when grain boundary wetting occurs.' Capillary films were observed in the boundaries after quenching from the exposure temperature. The mean depth of penetration increased linearly with time, and the activation energy for the process was found to be 22 kcal per g-atom. In a study of the Cu-Bi system Yukawa and sinott4 found that the depth of penetration of bismuth into high-purity copper bicrystals of orientations from 22 to 63 deg of tilt about (100) at 649°C ranged from 0.05 to 0.25 in. after a 12-hr anneal. This corresponds to a linear rate of 6 to 15 X 10~6 cm per sec. At the same reduced temperature of 0.68 the rate for the Ni-Bi system' was 7 x lo-' cm per sec. In another study of the Cu-Bi system, Scheil and schess15 determined the kinetics of grain boundary wetting in hot-worked commercial rod. While there were several complicating factors present in this study, there is general agreement with the above results. The kinetics of penetration were linear, the activation energy was 20 kcal per g-atom, and at 650°C the rate of wetting was 2 to 5 x 10-6 cm per sec. The rate of wetting in the A1-Ga system6 is somewhat
Citation
APA:
(1969) Part VII – July 1968 - Papers - Grain Boundary Penetration and Embrittlement of Nickel Bicrystals by BismuthMLA: Part VII – July 1968 - Papers - Grain Boundary Penetration and Embrittlement of Nickel Bicrystals by Bismuth. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.