Part VII – July 1968 - Papers - Structures and Migration Kinetics of Alpha:Theta Prime Boundaries in AI-4 Pct Cu: Part I-Interfacial Structures

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 11
- File Size:
- 1435 KB
- Publication Date:
- Jan 1, 1969
Abstract
Although the past results of X-ray experiments indicate that the broad faces of 0' plates are coherent with their matrix, dislocations lying in arrays have frequently been observed at these boundaries by transmission electron microscopy. Critical experiments employing the latter technique have been carried out in order to determine the origin of these dislocations. It is concluded that 8' plates are essentially coherent with the matrix at their broad faces throughout the aging temperature/time envelope studied. Virtually all of the dislocation arrays observed are deduced to have been formed by plastic deformation accompanying transformation. The proportion of dislocations arising from convexity of the plates is shown to be negligible by comparison with that from plastic deformation. At the higher aging temperatures, a[001] dislocations appeared in moderate numbers. These dislocations were traced directly, however, to the ledgewise dissolution of 0' occasioned by the formation nearby of 0 crystals. On the other hand, since there is a parametric difference normal to the broad faces of the ?' plates, mismatch dislocations do form at their edges. A previous conclusion that these dislocations have Burgers vectors of type a[001] was confirmed directly. The edges of 0' plates were observed to develop octagonal shapes when growing, but circular shapes during dissolution. 1 HIS paper presents the results of an investigation of the interfacial structures of plates of the transitional phase, 8', formed in an A1-4 pct Cu alloy. In a companion paper, Part 11, the effects of these structures upon the migration kinetics of a:?f boundaries are reported. This work is pa.rt of a general program designed to establish the basis of precipitate morphology. The present authors in Al-Ag,1 and whitton2 previously in U-C alloys, have used transmission electron microscopy to examine directly the vander Merwe3-6 networks of dislocations anticipated7 to compensate the small amount of lattice misfit normally founda at the broad faces of Widmanstatten plates. Since the broad faces of 0' plates are considered to be perfectly coherent with the corresponding habit planes in the a matrix,' no dislocations should be present at these faces. Many reports have been published, however, giving evidence to the contrary.10-18 The primary objective of this investigation was therefore to ascertain the nature of these dislocation structures. An attempt to do this is described in the first three sections of this paper. Inspection of the matching of the a and 8 ' lattices at the orientations of the 0:0' boundary corresponding to the edges of 0' plates raises the possibility that these edges may be made up of rather closely spaced edge- type misfit dislocations oriented so as to be sessile with respect to the lengthening or shortening of the plates. Since this structure should severely inhibit migration of the plate edges (Ref. 7, Part II), a situation not originally anticipated,' an experimental determination of the interfacial structure of the edges of 8' plates was clearly in order, and is reported in Section III. Those aspects of the experimental procedure applicable to both Parts I and I1 are presented in the next section. Specific procedures applicable to individual aspects of each investigation, and also the relevant surveys of the literature, are then individually reported in the appropriate sections. I) GENERAL EXPERIMENTAL PROCEDURE The material used in both parts of these studies was the same as that of a previous investigation:" strips of A1-3.93 pct Cu, 0.009 in. thick, prepared as before, solution-annealed at 548°C for 6 hr, and quenched. Details of subsequent aging, and in some cases deformation treatments, are given in the Experimental Procedure sections of the individual parts of both papers. Specimens of the heat-treated strips were electro-thinned as beforeLg and examined in a Philips EM 200 microscope equipped with a goniometer stage. A commercial hot stage, of the grid-heater type and capable of * 30-deg tilt about one axis in the plane of the specimen, was also used for kinetic studies. The usual precaution of calibrating for the additional heat supplied by the electron beam was taken.19 A 16-mm cine cam-I era mounted outside the viewing window was frequently used to record the transformations. Conventional selected-area diffraction and dark-field viewing techniques were used to identify the precipitates in the foils. Normal bright-field images corresponding to two-beam diffracting conditions or dark-field images were employed to characterize the dislocations observed at the interfaces of the precipitates. The application of these techniques to the study of an interphase boundary, and the interpretation of the images,20'21 has been fully described in a previous paper.'
Citation
APA:
(1969) Part VII – July 1968 - Papers - Structures and Migration Kinetics of Alpha:Theta Prime Boundaries in AI-4 Pct Cu: Part I-Interfacial StructuresMLA: Part VII – July 1968 - Papers - Structures and Migration Kinetics of Alpha:Theta Prime Boundaries in AI-4 Pct Cu: Part I-Interfacial Structures. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.