Part VII – July 1968 - Papers - The Low-Temperature Deformation Mechanism of Bcc Mg-14 Wt pct Li-1.5 Wt pct Al Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
M. O. Abo-el Fotoh J. B. Mitchell J. E. Dorn
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
243 KB
Publication Date:
Jan 1, 1969

Abstract

The effect of strain rate and temperature on the tensile flow stress of a polycrystalline bcc alloy of magnesium containing 14 wt pct Li and 1.5 wt pct Al was investigated for strain rates of 3.13 x lom5 to 3.13 x 10-3 per sec over the range from 20° to 300°K. From about 180° to 300°K the alloy exhibited an ather-ma1 deformation behavior where the flow stress was independent of strain rate and increased only slightly with decreasing temperature. At lower temperatures the flow stress was strongly strain-rate- and temperature-dependent, characteristic of deformations controlled by thermally activated mechmzisms. The activation volume for thermally activated plastic defornzation was between 5 and 30 cu Burgers vectors, independent of plastic strain. This low-temperature thermally activated deformation behavior was found lo be in satisfactory agreement with the theoretical dictates of the Dorn-Rajnak1 formulation of the Peierls mechanism where deformation is controlled by the rate of nucleation of pairs of dislocation kinks over the Peierls energy barriers. SEVERAL studies of the low-temperature thermally activated deformation of bcc metals and alloys (molybdenum,1 tantalum,1 Fe-2 pct Mn,2 Fe-11 pct MO,3 and AgMg4) have revealed that the strain rate is controlled by the activation of dislocations over the Peierls-Nabarro energy hills. Although there is some uncertainty as to the nature and effect of solute atom-dislocation interactions during low-temperature deformation of bcc metals, it has been concluded by Dorn and Rajnak,1 Conrad,1 and Christian and Masters6 among others that overcoming the Peierls-Nabarro stress which arises from the variations in bond energies of atoms in the dislocation core as it is displaced is the probable mechanism controlling low-temperature deformation. The purpose of this research was to investigate the low-temperature plastic deformation of the bcc alloy Mg-14 wt pct Li-1.5 wt pct A1 to determine if the behavior of this alkali metal alloy might be analogous to that for other bcc metals. This alloy was selected because of its availability and its current industrial importance as a lightweight material for aircraft and aerospace applications. I) EXPERIMENTAL PROCEDURE Polycrystalline tensile specimens having cylindrical gage sections 2 in. long by 0.2 in. in diam were machined from as-received alloy sheet stock of Mg-14 wt pct Li-1.5 wt pct Al. Specimens were annealed in an argon atmosphere at 423°K for 4 hr and maintained in a kerosene bath together with the sheet stock to prevent corrosion. The resulting specimen microstructure consisted of a coarse uniform dispersion of incoherent precipitate MgLi2Al particles7 in a bcc 0 phase matrix having an average grain size of 150 p. Prior to testing the specimens were chemically polished in dilute hydrochloric acid. Comparison of tensile properties and microstructures of specimens cut from center and edge sections of the sheet stock revealed no effects of inhomogeneities in the sheet material. Tensile tests were performed on an Instron machine at crosshead speeds corresponding to tensile strain rates of 1.56 x 10-5 and 1.56 x 10"3 per sec. Stresses were determined to ±2 x 106 dynes per sq cm and strains to within ±0.0001. Average values of shear stress t and shear strain y reported were taken as one half the tensile stress and three halves the tensile strain, respectively. Flow stresses were taken at 0.05 pct strain offset. Test temperatures down to 77°K were obtained by immersing the specimens in constant-temperature baths. Lower-temperature tests were performed in a liquid helium cryostat to within ±2°K of the reported values. Prior to testing at the various temperatures and strain rates all specimens were prestrained at 2 35°K at a shear strain rate of 3.13 x 10-5 per sec to a stress level of 0.606 x 10' dynes per sq cm to obtain a uniform initial state. Additional tests were made to determine the effect of changes in strain rate and strain on the flow stress by rapidly changing the crosshead motion during testing. Shear moduli of elasticity, needed for analyses of the data, were obtained at several temperatures by a common technique of determining the resonant frequencies of vibrations of rectangular test specimens. 11) EXPERIMENTAL RESULTS Fig. 1 shows the experimentally determined flow stress vs temperature for two strain rates. Two distinct regions of behavior are evident. Below about 180°K the strong increase in flow stress with increased strain rate and decreasing temperature indicates that deformation is controlled by a thermally activated dislocation mechanism. At higher temperatures an athermal region is evident where the flow stress is independent of strain rate and only slightly dependent on temperature. The applied stress t to cause plastic flow was separated into two components:
Citation

APA: M. O. Abo-el Fotoh J. B. Mitchell J. E. Dorn  (1969)  Part VII – July 1968 - Papers - The Low-Temperature Deformation Mechanism of Bcc Mg-14 Wt pct Li-1.5 Wt pct Al Alloy

MLA: M. O. Abo-el Fotoh J. B. Mitchell J. E. Dorn Part VII – July 1968 - Papers - The Low-Temperature Deformation Mechanism of Bcc Mg-14 Wt pct Li-1.5 Wt pct Al Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account