Part VII – July 1969 - Papers - Precipitation Processes in a Mg-Th-Zr Alloy

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 845 KB
- Publication Date:
- Jan 1, 1970
Abstract
Age hardening response of a Mg-Th-Zr alloy has been studied at temperatures in the range 60° to 450°C. Transmission microscopy revealed clustering of thorium atoms at low aging temperatures, supporting a previous report of GP zone formation. Peak strengthening, which is observed at 325°C, is due to the formation of a coherent, ordered, DO19 type superlattice structure, of Hobable composition Mg3Th, as plates parallel to the matrix prism planes. These plates later reveal a Laves phase structure of composition Mg2Th. The equilibrium Mg4Th phase begins to precipitate in two different forms at an early stage, competitively with the Mg2Th plates. RECENT work on the Mg-Th system indicated that, unlike most magnesium-base alloys, complex precipitation phenomena may be occurring. The partial phase diagram of the Mg-Th system indicates that an equilibrium phase, Mg5Th, is the sole intermediate phase.' sturkey,' however, has reported, using X-ray and electron diffraction techniques, that a metastable fcc Laves phase, Mg2Th, precedes the formation of the equilibrium compound, which he identified as closer in composition to Mg4Th. Murakami et al.3 reported that the equilibrium phase precipitates preferentially on grain boundaries and dislocations in a Mg-1.7 wt pct Th alloy; Kent and Kelly4 aged a more dilute alloy, Mg-0.5 wt pct Th, for 4 days at 220°C and found similar results. In addition, they reported that a platelike phase with a structure close to that of the magnesium matrix forms perpendicular to the basal plane and is probably ordered. Research on a Mg-4 wt pct Th alloy by electrical resistance measurements and transmission electron microscopy has suggested that GP zones may form at low aging temperatures.3 However, the electron micrographs purporting to show this phenomenon were not conclusive. In view of the fragmentary evidence concerning the nature of the precipitation processes in the various Mg-Th alloys, an aging study was undertaken to clarify the characteristics of the various precipitates which form and to correlate the mechanical properties of the system with the direct precipitate-dislocation interactions. The latter results are presented elsewhere.' The purpose of this paper is, therefore, to discuss the precipitation sequence in this system. EXPERIMENTAL PROCEDURE Sheet stock (0.060 and 0.010 in. thick) of a commercial Mg-3.93 wt pct Th-0.42 wt pct Zr alloy (designated HK3lA) similar to that studied by sturkey2 was supplied through the courtesy of Dr. S. L. Couling of Dow Metal Products Co. Zirconium does not enter into any precipitation reactions,' but is present primarily as a grain refiner. The alloy was chill cast, warm rolled to 0.090 in. thick stock, and then finally reduced by a combination of hot and cold rolling. The alloy chemistry is given in Table I. This material was solution treated at 580°C for 4 hr in a dry CO2 atmosphere, and then water quenched. Material in this condition was fairly clear of precipitate particles and was fully recrystallized. Aging at temperatures less than 200°C was accomplished by immersing the alloy in a silicone oil bath; for higher temperatures, aging was done in a salt pot. Age hardening treatments were conducted at 60°, 80°, 105°, 135°, 160°, 250°, 325°, 350°, and 450°C for times ranging from 5 min to 400 hr. Hardness tests were performed on chemically polished 0.060-in.-thick blanks of solution treated material which were aged at the various temperatures for increasing lengths of time. For aging temperatures above 150°C the Rockwell Superficial 30T scale was employed, while samples hardened at temperatures below 150°C were monitored with the 45T scale. Each data point consists of at least three separate readings. Yield stresses also were measured at room temperature on both 0.060 and 0.010 in. sheet specimens aged at 325°C. The aged foils were thinned by the window method in a solution of 80 pct absolute alcohol and 20 pct concentrated perchloric acid (70 pct) maintained at 0°C. A stainless steel cathode was used and the applied voltage was 10 to 15 v. Thinned samples were rinsed in distilled water and pure methanol. After the me-thanol rinse the thin foils were quickly dried between filter paper. Foils prepared by the above method were examined in a Hitachi HU11B electron microscope operating at 100 kv. RESULTS A) Hardness. The hardness data are depicted in Figs. 1 and 2. Peak strengthening occurs at 325°C after aging about 6 min, see Fig. 1. Significant strengthening is achieved also at 350°C, but aging at 450°C produces only softening. The stepped curve at 250°C indicates that a complicated precipitation process may be occurring at that temperature. Fig. 2 suggests that at least two hardening mechanisms exist since the lowest temperature hardness peaks are displaced to the left of the peaks obtained at 135° and 105°C. A great deal of scatter is observed at long times in all cases due to magnesium surface degradation caused by the silicone oil bath. B) Identification of the Strengthening Precipitates. The structure formed atlowagingtemperatures (c10O°C) was not clearly resolvable by transmission microscopy. The only bright-field evidence for a change in structure was a mottled appearance which could be observed at extinction contours, as shown in Fig. 3(a), and the disappearance of this effect when dislocations produced under the influence of the electron beam passed through the matrix, as noted in
Citation
APA:
(1970) Part VII – July 1969 - Papers - Precipitation Processes in a Mg-Th-Zr AlloyMLA: Part VII – July 1969 - Papers - Precipitation Processes in a Mg-Th-Zr Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.