Part VII – July 1969 - Papers - Some Observations on Alpha-Mn, Beta-Mn, and R Phases in the Mn-Ti-Fe and Mn-Ti-Co Systems

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 278 KB
- Publication Date:
- Jan 1, 1970
Abstract
The stabilization of the R, a-Mn, and 0-Mn phases have been studied in the Mn-Ti-Fe and Mn-Ti-Co systems. Iron and cobalt both appear to stabilize the (Mn-Ti) R phase to almost the sarne extent. The R-phase region was found to extend from the lowest e/a to slightly beyond the maximunz e/a limit known for this phase. But, while iron appears to stabilize the a-Mn phase, cobalt tends to stabilize the p-Mn phase. In the two systems manganese appears to get replaced by iron and cobalt in each of the mentioned phases. The instability of the a-Mn phase in the Mn-Ti-Co system and the /3 -Mn phase in the Mn-Ti-Fe system cannot be explained on the basis of adverse size effects because atomic diameters for both iron and cobalt (C.N. 12 at. diam) are ziery similnr and not much different from manganese which they replace. Qualitatively, the reason for the stability of the a-Mn and the p-Mn phases can be traced to the more favorable e/a ratio prevailing in the respective systems and to a competing tendency between the two phases. In transition metal alloy systems the o, p,P, R, a- Mn,' and p-Mn2 phases have been claimed as electron compounds. A large volume of work has been done to establish the criterion for the formation of the o phase but until very recently practically no systematic work was done on the a-Mn and the /3-Mn phases. A recent investigation on the P-Mn phase3 indicates the e/a criterion for p-Mn phase stabilization. Since the R phase was first known to appear only in certain ternary systems1 no detailed work was then possible for this phase. The R phase has been recently discovered as a binary intermetallic compound in the Mn-Ti~ and Mn-si~-' binary systems. The existence of binary R phases opens up the possibilities of studying the effect of alloying elements on the stabilization of the R phase. Of the two binary systems possessing an R phase, the Mn-Ti system appears to be more interesting because at a suitable high temperature it is possible to find the three electron compounds, the a-Mn, p-Mn, and R phases, side by side and it is possible to study the effect of a third transition element on these three electron compounds. For the present investigation iron and cobalt, so called B elements for the formation of electron compounds, have been used as the third element to study the stabilization of the a-Mn, P-Mn, and R phases. EXPERIMENTAL PROCEDURE The alloys were prepared by using 99.9 pct pure electrolytic Fe and Mn, 99.5 pct Co, and crystal bar titanium, supplied by Semi Elements Inc., New York and Gallard Schelsinger Mfg. Co., New York. Weighed amounts of the components were melted in recrystal-lized alumina crucibles in an inert atmosphere (argon) high-frequency induction melting unit. Titanium was made into fine chips for easy dissolution and a special charging procedure was adopted to avoid contacts of titanium chips with the alumina crucibles. Up to 20 at. pct Ti, the maximum titanium content in the investigated alloys, there was no visible sign of reaction of titanium with the alumina crucibles. With a careful control of melting time and temperature the losses were minimized and were always found to be below 0.1 pct. Because of such small and almost constant weight losses, the alloys were not finally analyzed. The alloys were wrapped in molybdenum foil and annealed in evacuated and sealed silica capsules at 1000" * 2°C for 72 hr and subsequently quenched in cold tap water. Annealed samples were examined metallographically and by X-ray diffraction. For all high manganese alloys oxalic acid solutions of various concentrations and 1.0 pct HN03 solution were found suitable as etching reagents. Best contrast between the a-Mn and the R phases could be obtained by using freshly prepared 60 pct glycerine + 20 pct HN03 + 20 pct HF solution. For high iron and cobalt containing alloys, especially for alloys containing the a-Fe, y-Fe, and P-Co phases, 15 cc HNOJ + 60 cc HC1 + 15 cc acetic acid + 15 cc water solution was found to be the best etching reagent. All X-ray diffraction work was carried out (using specimens prepared from annealed powders) with a 114.6 mm diam Debye-Scherrer camera using unfiltered FeK radiation at 25 kv and 10 ma. All calculations for X-ray diffraction work were carried out using an IBM 7044 digital computer RESULTS AND DISCUSSION The two ternary systems, MnTiFe and MnTiCo, were investigated near the manganese rich end, Figs. 1 and 2, and show some common features. In both alloy systems large extensions of narrow R phase regions occur at almost constant titanium contents. At titanium contents higher than that of the single phase R-phase alloys, the same unidentified X phase was found in both ternary systems. The extensions of the X phase close to the Mn-Ti binary indicate that this phase could be the TiMns phase. Too few X phase diffraction lines were present in the diffraction patterns to make positive identification of the X phase. In contrast to this similarity the two systems show opposite behavior in the extensions of the a-Mn and 8-Mn phase regions; while iron tends to stabilize the a-Mn phase, cobalt
Citation
APA:
(1970) Part VII – July 1969 - Papers - Some Observations on Alpha-Mn, Beta-Mn, and R Phases in the Mn-Ti-Fe and Mn-Ti-Co SystemsMLA: Part VII – July 1969 - Papers - Some Observations on Alpha-Mn, Beta-Mn, and R Phases in the Mn-Ti-Fe and Mn-Ti-Co Systems. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.