Part VII – July 1969 - Papers - Texture Inhomogeneities in Cold-Rolled Niobium (Columbium)

The American Institute of Mining, Metallurgical, and Petroleum Engineers
R. A. Vandermeer J. C. Ogle
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
572 KB
Publication Date:
Jan 1, 1970

Abstract

Two distinct types of depth-dependent variations in texture have been observed in niobium cold-rolled various amounts up to 99.5 pct reduction in thickness. These nonuniformities are thought to be the results of nonhomogeneous plastic dewmation during rolling. The first type is characterized by a zone at intermediate depths that tends to lack certain strong orientations which are present in the surface and center layers of the rolled stock. This type of texture modification seemed to be associuted with "high" body rolling and may be related to the shape of the zone of deformation in rolling. The second type of texture inhomogeneity found involved the formation of a unique texture in the surface layers of heavily rolled strip. High fiiction forces between work piece and rolls appear to be needed to generate and maintain this texture. We believe that this unique surface texture results from a shear mode of deformation in the surface layers. THE evolution of texture in both the surface and center regions of cold-rolled niobium as a function of increasing deformation from 43 to 99.5 pct reduction in thickness was reported in a previous paper.' It was noted that for strips rolled between 95 and 98 pct reduction a distinctly different texture appeared in the surface layers which was unlike the center texture. Certain other layer to layer textural variations were also detected during the experimental phase of that work but were not described in the paper. Surface textures have been reported previously for the bcc materials iron and Steel2-4 and are well known in the fcc metals.5 It is usually stated that these are shear textures which arise under conditions of high friction between specimen and rolls. Work by Mayer-Rosa and Haessner5 n niobium rolled under conditions presumed to be high roll friction gave no indication, however, of a surface texture in that material. This is indeed puzzling in view of our results.' Thus we undertook additional experiments designed to study the stability of the surface texture for certain rolling variables. The variables investigated were the presence or absence of lubrication, amount of reduction per pass, and reverse vs unidirectional rolling. It is the purpose of the present paper to describe the kinds of depth-dependent textural inhomogeneities that we have observed in rolled niobium as well as to present the results of our recent experiments on the stability of the surface texture. Possible explanations for the depth-dependent texture variations will be discussed in terms of nonhomogeneous plastic deformation during rolling. EXPERIMENTAL Specimens cut from the niobium rolled to different reductions in the previous study1 were examined at various layer levels throughout the strip thickness for textural inhomogeneity. The specimen surfaces were either etched or machine ground and etched to remove material to a specific depth. Textures were determined by means of the Schulz X-ray reflection pole figure method with a Siemens texture goniometer and Cum X radiation. Since the important intensity peaks of the textures in niobium are usually located on the normal direction (N.D.) to rolling direction (R.D.) radius of the (110) pole figures, it was sufficient in many cases to scan only along this radius. At selected depths or where additional information was required the entire (110) pole figure was also obtained. In studying the stability and formation of the surface texture, experiments were conducted on 0.400-in.-thick, fine-grained, randomly oriented niobium specimens extracted from the same starting stock as that used in the earlier study.' Two of these specimens were rolled at room temperature to a total reduction of 96.4 pct. One was rolled between cleaned and degreased rolls with no lubrication. The other was lubricated between passes with Welch Duo Seal vacuum pump oil. The rolling schedules of each were kept as nearly identical as possible. Drafts were of the order of 0.006 to 0.012 in. per pass. Other experiments consisted of rolling specimens at constant fractional reduction per pass, i.e., (ta- tb)/ta equals a constant where ta and tb are the entrance and exit thickness of the rolled stock, rather than at a constant draft, i.e., ta- tb equals a constant. Ten specimens were rolled at room temperature on a two-high, motor-driven rolling mill with 8-in.-diam rolls. These specimens were rolled to thicknesses of between 0.041 and 0.073 in. (82 to 90 pct total reduction) at approximately constant reductions per pass ranging from 9 to 45 pct. Kerosene was used as a lubricant. Half of the specimens were always rolled in the same direction while the other half were reversed end to end at each pass. The texture in the surface regions was determined with the X-ray technique described above. RESULTS The textural inhomogeneities noted in niobium rolled from fine-grained, randomly oriented stock 1.5 in. long by 0.75 in. wide by 0.40 in. thick can be classified into two types. The first may be discussed with the aid of Figs. 1 to 3. Fig. 1 is a three-dimensional plot of the X-ray intensity in units of times random vs f , the angle from the N.D. to any point along the N.D. to R.D. radius of the (110) pole figure, and depth, given as percent of the thickness (?t/to X 100, where at is the thickness of material removed and to is the as-rolled
Citation

APA: R. A. Vandermeer J. C. Ogle  (1970)  Part VII – July 1969 - Papers - Texture Inhomogeneities in Cold-Rolled Niobium (Columbium)

MLA: R. A. Vandermeer J. C. Ogle Part VII – July 1969 - Papers - Texture Inhomogeneities in Cold-Rolled Niobium (Columbium). The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account