Part VII – July 1969 - Papers - The Lanthanum-Rhodium System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
P. P. Singh A. Raman
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
604 KB
Publication Date:
Jan 1, 1970

Abstract

The constitution of the La-Rh system was studied by powder X-ray diffraction, metallopaphic, and differential thermal analysis techniques and an equilibrium diagram is presented. Eleven intermediate phases occur in the system and the crystal structural data for nine of them were determined. La3Rh crystallizes in an orthorhombic structure of undetermined type, whose unit cell is obtained by doubling the 'a; and 'c,,' edges of an FesC type unit cell. The other intermediate phases of the system are LarRh-3( undetermined structures also occur in the system. LaRh, undergoes a polymorphic phase transformation at 1240°C. LaRh3 and La2Rh7 also exhibit polymorphisnz. The phases Laah and LazRh7 melt congruently. The latter undergoes a eutectoid transformation into LaRh, and Rh at 1205°C. Laah3 is formed by a peritectoid reaction between Laah and La,Rh,,. The other Phases result from peritectic reactions between the liquid and the adjacent rhodium-rich phases. The intermediate Phases of the La-Rh system are compared with those of the La-Co and La-Ni systems. DURING the course of a detailed investigation to study the occurrence of CrB, FeB, A1B2, and related structures in the rare earth alloys it was found that much information is lacking for the rare earth noble metal systems. Although the structures of several rare earth alloys containing the noble metals at the AB and AB2 stoichiometries have been reported, the occurrence of related structures at other stoichiometries has not been studied. We have initiated a project to study the crystal structural features of selected rare earth-rhodium alloys and to map the equilibrium diagrams of representative systems with conventional methods. The results of our investigation in the La-Rh system are presented in this paper. Two phases were known in the La-Rh system. LaRh has the CrB-type structure.' LaRhz is a MgCu2-type Laves phase.z EXPERIMENTAL PROCEDURE Alloys weighing less than 1 g were prepared from commercially pure lanthanum (99.9 pct +), supplied by Lunex Company, Pleasant Valley, Iowa, and rhodium (99.92 pct +), supplied by Engelhardt Industries, Newark, N.J., in a conventional arc melting furnace under argon atmosphere. The buttons were turned upside down and remelted three times to insure homogeneity in the samples. Since negligible loss of material was encountered during melting, a chemical analysis of the alloy buttons was not undertaken. Powder specimens for X-ray diffraction studies in the as cast state were then prepared. The buttons were wrapped in thin molybdenum foils and homogenized by heating in vacuum at suitable high temperatures for more than 1 week. They were then broken into three or four pieces for annealing experiments. The pieces were wrapped in molybdenum foils and annealed at various temperatures in evacuated quartz capsules. The annealing was carried out for 2 hr at or above 1200°C, 1 day at temperatures close to llOO°C, 2 days at 1000°C, and for 1 week at temperatures below 1000°C. After annealing the alloy pieces were again broken and powder specimens for X-ray diffraction were prepared. The powders of the lanthanum rich alloys with more than 80 at. pct La were prepared by filing. The filings were sealed in molybdenum tubings and stress-relieved at 600°C in vacuum. It was not deemed necessary to stress-relieve the powders of the other alloys, since the alloys were very brittle and were ground easily. POWDER X-RAY DIFFRACTION X-ray diffraction photographs of powders (-325 mesh size) of the alloys in the as cast and annealed states were prepared in a Guinier-de Wolff focussing camera with copper K, X radiations. These patterns were studied to identify the stoichiometries and the crystal structures of the intermediate phases. The lattice parameters of the phases were calculated after minimizing the differences between the observed sin2 6 values, calculated from the diffraction angles 8, and the sin2 8 values, calculated using approximate lattice constants obtained from a few lines. These differences were minimized manually to less than 0.0005. The latLice constants are judged to be accurate to *0.005A for values less thp about 10A and to k0.01~ for values greater than 10A. The relative intensities of the lines were calculated using a computer program written by Jeitschko and Parthk.~ No attempt was made to refine the atomic positional parameters in the phases. METALLOGRAPHY The phase equilibria in the investigated alloys in the as cast and annealed states were also studied by metallographic examination. The polished specimen surfaces were etched with 10 pct picric acid in alcohol (alloys up to 25 pct Rh), concentrated picric acid (from 25 to 37.5 pct Rh), 2 pct nital (40 to 50 pct Rh), 10 pct nital (from 50 to 66.7 pct Rh) and with concentrated 48 pct HF for the other rhodium-rich alloys. Selected microstruture~ were then photographed using a Po-laroid Land camera. THERMAL ANALYSIS Differential thermal analysis of the alloys was carried out in DTA-668 Stone differential thermal ana-
Citation

APA: P. P. Singh A. Raman  (1970)  Part VII – July 1969 - Papers - The Lanthanum-Rhodium System

MLA: P. P. Singh A. Raman Part VII – July 1969 - Papers - The Lanthanum-Rhodium System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account