Part VII - Mechanisms of the Codeposition of Aluminas with Electrolytic Copper

The American Institute of Mining, Metallurgical, and Petroleum Engineers
James E. Hoffmann Charles L. Mantell
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
10
File Size:
2763 KB
Publication Date:
Jan 1, 1967

Abstract

Mechanical inclusion, electrophoretic deposition, and adsorption were studied as mechanisms for code-position of aluminas present in copper-plating electrolytes as an insoluble disperse phase. Mechanical inclusion was not a significant factor. That codeposi-tzon of aluminas by an electrophoretic mechanism was unlikely was substantiated by measurements of the potential of the aluminas. The alumina content of the deposits was studied as a function of the pH of the bath. These tests in conjunction with sedimentation studies demonstrated the absence of an isoelectric point for the alutninas over the pH range examined. Thiourea in the electrolyte (a substance known to be adsorbed on a copper cathode during electrodeposition) affected the amount of alumina in the electrodeposit. However, no adsorption of thiourea on aluminas in aqueous dispersions was detected. If it were possible to produce a dispersion-hardened alloy of copper and alumina by electrodeposition, an alloy possessing both strength and high conductivity at elevated temperatures might be anticipated. Investigation of the mechanism of codeposition of aluminas with copper was undertaken with the hope that knowledge of the mechanism would aid in the development of such an alloy. The word "codeposit" here does not necessarily imply an electrolytic phenomenon but rather that the materials codepositing, the various aluminas, are transported to and embedded in the electrodeposited copper by some means. Mechanical inclusion in electrodeposition implies a mechanism of codeposition which is wholly mechanical in nature; the only forces acting on a particle are gravity and contact forces. Such a particle is presumed to be electrically inert and incapable of any electrical interaction with electrodes in an electrolytic plating bath. Processes for matrices containing a codeposited phase by electrodeposition from a bath containing a disperse insoluble phase frequently state that code-position is caused by mechanical inclusion.10,2,12 If settling, i.e., gravity, be the controlling mechanism for codeposition of aluminas, then assumptions may be made that 1) the content of alumina in the electrodeposit should be enhanced by increasing the particle size, 2) the geometry of the system, that is, the disposition of the cathode surfaces relative to the di- rection of the falling particles, should affect the alumina content of the electrodeposit, 3) in geometrically identical systems the chemical composition of the electrolyte employed should exercise no effect on the alumina content of the deposit, that is, the alumina content should be the same in all cathode deposits irrespective of bath composition. A bent cathode19 evaluates the clarity of filter effluent in electroplating baths by comparing the roughness of the deposit on the vertical surface with that on the horizontal surface. Two difficulties are inherent in this technique: 1) the current density on the horizontal portion of the cathode would be substantially greater than that on the vertical surface; 2) should the deposit obtained be rough, projections on the vertical face could act as horizontal planes and vitiate the relationship between the vertical and horizontal surfaces. Bath composition should have no substantial effect on the alumina content of the deposit. Two different electrolytic baths were employed. They possessed variant specific conductances and substantially different pH ranges. The experimental tanks were rectangular Pyrex battery jars 6 in. wide by 3 1/4 in. long by 9 3/4 in. deep. The cathodes were stainless steel 316 sheet of 0.030 in. thickness, cut to 7.5 by 1.75 in. and bent at right angles to form an L-shaped cathode whose horizontal surfaces measured 1.75 by 3.0 in. All edges and vertical surfaces were masked with Scotch Elec-troplaters Tape No. 470. The anodes were electrolytic cathode copper 9 in. high by 2.25 in. wide by 0.5 in. thick. To eliminate inordinately high current densities on the projecting edge of the cathode, the anode was masked 1 in. above and below the projected line of intersection of the cathode with the anode. The exposed area of the anode was equal to that of the cathode, providing both with equal average current densities. The agitator in the cell was of Pyrex glass and positioned so its center line was equidistant from cathode and anode, and a plane passed horizontally through the center of the blade would be located equidistant from the bottom of the cathode and the bottom of the deposition tank. The assembled apparatus is depicted in Fig. 1. Hatched areas on anode and cathode represent the area of the electrodes wrapped with electroplaters tape. MATERIALS The chemicals were copper sulfate—CuSO4 • 5H2O— technical powder (Fisher Scientific Co.). Spectro-graphic analysis showed substantial freedom from antimony, arsenic, and iron. Traces of nickel were present.
Citation

APA: James E. Hoffmann Charles L. Mantell  (1967)  Part VII - Mechanisms of the Codeposition of Aluminas with Electrolytic Copper

MLA: James E. Hoffmann Charles L. Mantell Part VII - Mechanisms of the Codeposition of Aluminas with Electrolytic Copper. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account