Part VII - Papers - A Kinetic Study of Copper Precipitation on Iron: Part II

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Ravindra M. Nadkarni Milton E. Wadsworth
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
9
File Size:
2590 KB
Publication Date:
Jan 1, 1968

Abstract

The kinetics of cetnentation of copper with iron were observed to follow first-order kinetics and increase with speed of agitation to a limiting value. Maximum rates agree closely with theoretical values based upon a model of aqueous solution diffusion through a litniting boundary film. Back reaction kinetics are shown both theoretically and experimentally to be independent of ferrous iron concentration in solution. The inlportance of attnospheres of air, oxygen, nitrogen, and hydrogen was studied and the results have been correlated with several impovtant oxidation processes involving metallic iron and copper. The kinetics of the reaction of ferric ion with metallic iron were found to be slow in the absence of metallic copper and essentially proportional to the surface area of metallic copper present in the system. THE precipitation of copper on iron is classic as an example of a relatively ancient art applied successfully for centuries with little fundamental understanding of the important parameters involved. There is some indication that the process has been a commercial means to produce copper since the sixteenth century.' The amount of fundamental work on the cementation of copper with iron is not great. Wartman and Roberson2 carried out a series of detailed copper cementation experiments using natural and synthetic mine water. The following were presented as the three principal reactions: Reaction [I] is the desired cementation reaction and accordingly 0.88 lb of iron would produce 1 lb of copper. In actual practice iron consumption would more normally fall in the range of 1.5 to 2.5 lb per lb of copper. Wartman and Roberson attributed the excess consumption of iron to Reactions [2] and [3]. They found that Reactions [I] and [2] proceeded at approximately the same velocity while Reaction [3] was much slower and would be diminished by controlling the contact time. It was also pointed out that increased agitation is beneficial in removing hydrogen bubbles and barren layers of solution at the iron surface as well as removing contaminants resulting from the hydrolysis of iron. Episkoposyan3 and Episkoposyan and Kakovskii4 studied copper and silver cementation on rotating iron disks in chloride solutions. The kinetics based upon a diffusion model were first order and varied linearly with surface area and with angular velocity raised to the one-half power according to the Levich equation. The experimental activation energy for both copper and silver was approximately 3 kcal per per mole. Excess iron consumption was found to increase with temperature. The rate of cementation first increased with increasing acidity and then diminished at high acid concentrations. sutolov5 has presented an excellent review of the Leach-Precipitation-Flotation (LPF) process including a discussion of copper cementation from an electrochemical point of view although few experimental results were presented. From voltage considerations he predicted that cementation should not be influenced by the concentration of ferrous iron in solution. He considered several secondary reactions including Reactions [2] and [3] and pointed out the importance of oxidation of ferrous iron to ferric with oxygen. In addition it was suggested that Reaction [2] was enhanced by the dissolution of metallic copper by ferric iron which in turn consumed excess iron by the cementation reaction, Eq.[1]. Cementation of copper on metals other than iron has been studied by several investigators but, as in the case of iron, the amount of fundamental work is not extensive. Bashkova and kovalenko6 and Bashkova7 studied the cementation of copper on indium from copper and indium sulfate solutions. The rate was found to be first order and to increase with acidity. This was associated with a decrease in potential (EIn — ECu) and the simultaneous reduction of hydrogen ions at low pH. The rate of cementation also decreased with increasing indium concentrations which was postulated to be due to the decrease in the rate of diffusion of the ions in solution. Below 97°C the experimental activation energy was found to have the unusually low value of 2 kcal per mole and was attributed to diffusional control. Above 97°C the rate increased suddenly and was explained as a change in the rate-controlling step to a chemical reaction. In Part I of this study Nadkarni et a1 .1 have reported on preliminary results obtained in a laboratory study of the kinetics of the cementation process. The rate was found to be first order, proportional to the surface area of the iron, and to increase with speed of stirring until a maximum rate was observed. At low stirring speeds the deposit was spongy and adherent. At medium speeds the copper peeled off in bright strips and at high speeds finely divided copper was produced and continually removed from the surface. The amount of excess iron consumed increased with speed of stirring and with temperature. The average experimental activation energy combining results from several types of iron was 5.8 + 1.6 kcal per mole suggesting diffusional control through a limiting boundary film. Traditionally copper cementation has been carried out over the centuries in gravity-fed launders of various design containing scrap iron. More recently rotating drum precipitators and activated launders8'10 have been used. In the latter, copper-bearing solutions are
Citation

APA: Ravindra M. Nadkarni Milton E. Wadsworth  (1968)  Part VII - Papers - A Kinetic Study of Copper Precipitation on Iron: Part II

MLA: Ravindra M. Nadkarni Milton E. Wadsworth Part VII - Papers - A Kinetic Study of Copper Precipitation on Iron: Part II. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account