Part VII - Papers - Fatigue Crack Nucleation in a High-Strength Low-Alloy Steel

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Raymond C. Boettner
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
840 KB
Publication Date:
Jan 1, 1968

Abstract

The present work had for its purpose: 1) the identification of crack nucleation sites in AISI 4340, quenched to martensite and tempered over a range of 'temperatures; and 2) the comparison of fatigue processes in AISI 4340 with processes observed previously in pure metals From constant def1ection-bending fatigue tests, martensite boundaries were identified as the favored crack nucleation sites in quenched and tempered AISI 4340. It, also, was concluded that the fatigue processes operating- in this lous-alloy steel were similar to Processes observed in pure tnetals. ALTHOUGH much engineering data has been accumulated on the fatigue properties of quenched and tempered martensitic steels,' fatigue as a process is not as well understood in martensite as it is in pure metals.' Important features of the fatigue process, such as the identity of the nucleation sites, have not been determined in the commercially important high-strength low-alloy structural steels. The present work had for its purpose: 1) the identification of crack nucleation sites in a low-alloy steel, i.e., AISI 4340, which had been quenched to martensite and tempered over a range of temperatures; and 2) the comparison of fatigue processes in the AISI 4340 with processes observed previously in pure metals. This comparison of the fatigue processes in the different tempers was restricted to the high-strain low-cycle part of the S-N curve. Under these test conditions, previous work on a number of metals has shown that a large number of cracks are nucleated in less than 30 pct of the fatigue life.3 Furthermore, crack nucleation sites are not restricted to inclusions but are also associated with intrinsic structural characteristics of the metal. MATERIAL A 20-lb ingot of vacuum-melted AISI 4340 (for composition see Table I) was hot-rolled to 1-in.-diam rod and then cold-rolled to a 1-in.-wide strip, 0.08 in. thick. Fatigue specimens, see insert of Fig. 1, were machined from the strip with the long dimension parallel to the rolling direction. m this orientation, the stringers of 1 to 2 p inclusions present in the sheet lay parallel to the stress axis in the specimens. The specimens were austenitited at 2050°F in order to obtain a large prior austenite grain size, i.e., 2 mm, which facilitated the subsequent identification of the prior austenite boundaries. A helium atmosphere was used to minimize decarburization. After austenitiza-tion at 2050°F, the specimens were transferred to a 1450°F furnace so that specimen distortion was held to a minimum in the subsequent oil quench. Previous work4 indicated that refrigeration in liquid nitrogen prior to tempering reduced the percentage of retained austenite in the quenched specimens to less than 5 pct. Tempering was carried out in air over the temperature interval of 200°to 800°F to produce a range of mechanical properties, Table I. The preparation of the fatigue specimen was completed by grinding about 0.005 in. from each surface and electropolishing in a chrome trioxide-acetic acid solution for 30 min. Examination of etched cross sections of specimens prepared in this fashion showed the foregoing specimen preparation to be adequate for the removal of the decarburized layer present after the heat treatment. Transmission electron microscopy showed that the as-quenched microstructure of this alloy consisted of a mixture of martensite plates containing either a high density of dislocations or microtwins. Previous work5'6 indicated that in the course of oil quenching autotem-pering resulted in the formation of E carbide on the martensite and microtwin boundaries. Tempering for 2 hr at temperatures up to about 400°F resulted in further precipitation of the E carbide. Finally, at about 400°F, cementite began to replace the E carbide on the martensite and microtwin boundaries in addition to forming a Widmanstatten structure within the plate matrix. EXPERIMENTAL S-N curves were obtained using electropolished specimens cycled at 1800 cpm as cantilever beams in fully reversed bending at selected constant deflections. The deflections were translated into surface strains by means of a calibration curve obtained through the use of strain gages. An argon atmosphere was used to minimize environmental effects. To investigate the development of fatigue slip bands, the specimens of the different tempers were unidirec-tionally bent to a surface strain of 0.005 to 0.007, photographed to record the location and appearance of slip bands so introduced, and then cycled to failure
Citation

APA: Raymond C. Boettner  (1968)  Part VII - Papers - Fatigue Crack Nucleation in a High-Strength Low-Alloy Steel

MLA: Raymond C. Boettner Part VII - Papers - Fatigue Crack Nucleation in a High-Strength Low-Alloy Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account