Part VIII – August 1968 - Papers - Effect of Grain Size and Temperature on the Strengthening of Nickel and a Nickel-Cobalt Alloy by Carbon

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 472 KB
- Publication Date:
- Jan 1, 1969
Abstract
Various mechanical properties of the Ni-Co-C alloy system were investigated to delineate the strengthening effect of carbon. Carbon concentration, cobalt concentration, vain size, temperature, and strain rate were varied so that thermal activation analysis and the Hall-Petch analysis could be used to evaluate the strengthening effect of carbon. Increasing carbon increased the strength of nickel and a Ni-60 pct Co alloy , with the effect becoming more pronounced at lower temperatures. Yield stress depended linearly on carbon concentration in nickel, but it depended on the square root of carbon concentration in the Ni-60 pct Co alloy. The Hall-Petch slope of nickel increased with carbon concentration; however, that of the Ni-60 pct Co alloy did not. The yielding behavior of these alloys was sensitive to composition, grain size, and temperature. Cobalt eliminated serrations in the flow curve of carbon-containing nickel at 300' and weakened them severely at higher temperatures. Pairs, or clusters, of carbon atoms appear to be responsible for the observed strengthening behavior. FLINN' conducted several experiments with carbon in nickel in an effort to provide information on the strengthening effect of interstitial impurities in solid solution in fcc metals and alloys. Strengthening which increased with decreasing temperature led him to conclude that carbon causes Cottrell locking in nickel. Fleischer2 analyzed Flinn's data and calculated that the strengthening effect of carbon in nickel was smaller by a factor of fifty than the strengthening effect of carbon in a! iron. Fleischer2 termed the magnitude of strengthening of carbon in nickel "gradual" and that of carbon in a! iron "rapid". He attributed "gradual" hardening to hydrostatic strains and localized changes in modulus of elasticity around solute atoms, whereas he attributed "rapid" hardening to tetragonal strains around solute atoms. Sukhovarov et a1.3-7 reported strain aging and serrated plastic flow in nickel, both of which they attributed to the presence of carbon. Serrated plastic flow has been rationalized by a process involving a series of dislocation pinning and multiplication steps.8, This process is more probable when screw dislocations are strongly pinned. Screw dislocations cannot be pinned by pure hydrostatic forces from the symmetrical strains of an interstitial impurity in an fcc lattice, except for small, second-order effects. However, they might be pinned by localized changes in modulus of elasticity around solute atoms,' by the pinning of the edge components of the partial dislocations of an extended screw dislo~ation,'~ or by clustered groups of solute atoms whose net elastic stress field is unsymmetric. The purpose of the present work was to investigate various mechanical properties of the Ni-Co-C a1loy system which are sensitive to pinning effects in order to delineate the specific pinning mechanism of carbon. Carbon concentration, grain size, temperature, and strain rate were varied so that thermal-activation analysis and the Hall-Petch analysis could be used to evaluate the pinning mechanism. Cobalt was added to lower stacking fault energy so that the number and extension of split, screw dislocations would be increased in order to test the possibility of pinning by carbon at extended screw dislocations. EXPERIMENTAL PROCEDURE Nickel and cobalt (both 99.98 pct-. pure) were melted with graphite in stabilized zirconia crucibles and cast at lo-' Torr to form Ni-C and Ni-60 pctCo-C alloys. Two ingots were heated to 1250°C and were forged to 1-in.-sq bars. These bars were machined to 4-in.-round bars, and then swaged cold to 0.144-in. -diam rods. Reductions in area of approximately 75pct were used with intermediate anneals at 900°C for 1 hr. The carbon content of batches of 0.144-in.-diam rods from each ingot was reduced to two levels by annealing 5-in. lengths in palladium-purified, dry hydrogen at 1100°C for 25 and 100 hr. The remaining material from each ingot was annealed at 10"5 Torr for 1 hr at 1100"~. These treatments gave a total of three carbon levels for both the nickel and the Ni-60 pct Co alloy. The 0.144-in.-diam rods were swaged to 70-mil wire, cut into test specimens, and then re crystallized at lom5 Torr in capsules for 1 hr at temperatures ranging from 760" to 1050" ~. The capsules were broken and the specimens were immediately quenched into water. Average grain size was measured using Hilliard's method of circular intercepts." Annealing twin boundary intercepts were counted in addition to grain boundary intercepts to establish an average grain size. Average grain sizes ranged from 5 to 140 p depending on the cobalt concentration and re-crystallization temperature. Tension tests were made in duplicate at various temperatures at a crosshead speed of 8.34 x 10"4 in. per sec with an Instron Universal Testing Machine. Specimens of 1-in. gage length with soldered ball ends were used at atmospheric and cryogenic temperatures. Pinch grips were used on specimens at elevated tem-
Citation
APA:
(1969) Part VIII – August 1968 - Papers - Effect of Grain Size and Temperature on the Strengthening of Nickel and a Nickel-Cobalt Alloy by CarbonMLA: Part VIII – August 1968 - Papers - Effect of Grain Size and Temperature on the Strengthening of Nickel and a Nickel-Cobalt Alloy by Carbon. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.