Part VIII – August 1968 - Papers - Effect of Strain Rate and Temperature at High Strains on Fatigue Behavior of SAP Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 7
- File Size:
- 731 KB
- Publication Date:
- Jan 1, 1969
Abstract
The fatigue behavior of three SAP alloys was studied in ternzs of strain rate and temperature, at high strains. The k values in the modified Manson-Coffin equation, Nk4 = C, were less than 0.5 under all test conditions, and change with strain amplitude for the lower-oxide alloys at about 2 pct strain. Lowest k values were near 0.25. Strain rate had no effect on life at 80 F, but had an increasingly greater effect with increasing temperature above 500". Life decreased with decreasing strain rate, above 500"F, and with increasing temperature. Ductility at fracture in a tension test was indicated to be an important factor in determining 1ife in these big+-strain tests with the SAP alloys. INEVITABLY, in the course of mechanical tests at elevated temperatures, particularly if significant time at temperature is involved, there are large changes in structure; these changes make it difficult to relate behavior patterns over ranges of temperature or strain rates at high temperatures. Such changes are to be expetted in low cycle fatigue at low strain rates and high temperatures. Accordingly, it was of great interest to examine the low cycle fatigue behavior of SAP / an aluminum oxide dispersion-strengthened aluminum, a type of alloy which had shown unusual structure stability to temperatures as high as 1000" to 1150°F and resisted recrys-tallization essentially to the melting temperature.'j3 Since the matrix is pure aluminum, there are no complications of averaging, agglomeration, or phase solution. It was also desirable to check the Manson-Coffin equation4?' for the SAP alloys, namely N~E~ = , where ep is the total plastic strain amplitude, k and C are constants, and N is the number of cycles to failure. Here, too, was an opportunity to check the roles of temperature and strain rate with a very stable material. Tavernelli and coffin6 had concluded that k had a value of about 0.5 for many alloys and C was equal to ~/2, where E is the fracture ductility determined from a static tension test. The results were obtained from low-temperature tests where creep and diffusion processes are unimportant. Manson7 found k = 0.6 fitted his data reasonably well; however, in later analyses of a large amount of low cycle fatigue data generated at room temperat~re@"~ he found k to vary from 0.6 for short lives to 0.21 for long-life fatigue tests. In the latter studies,89g Manson separated the total strain range into elastic and plastic components when he found that k was influenced by the nature of the strain. The use of EL (total strain) instead of EP (total plastic strain)4'5 makes a difference in the resultant k value. The ratio of changes with temperature, strain rate, and strain; further, there are the problems in the determination of the elastic strain. Based on these considerations, and the improved fit of points in a plot of by Wells and Sullivan,' is also utilized in these studies. Anderson and wahl,14 using commercial 1100 aluminum, and Blucher and Grant,15 using 99.99 pct pure aluminum, found an increase in life with increasing test temperature. Anderson and Wahl were the first to report low cycle fatigue results from SAP materials. With increasing temperature, the role of strain rate becomes more important. In this regard, care must be exercised to differentiate between frequency (wherein strain rate may vary from zero to a maximum in each cycle, sinusoidally, for example), and constant strain rate, as used in the present study, in a saw-tooth type cycle; in the latter case, the frequency is not specified but can easily be calculated from the strain and strain rate data. It has generally been found that life in low cycle fatigue tests decreases with decreasing frequency16 or with decreasing strain rate at elevated temperatures.15 Coffin,17 reviewing Eckel's work,16 also reported that k increased with decreasing frequency for acid lead, yielding values from 4.0 at a frequency fo 6.6 cycles Per day to 1-46 at a frequency of 7440 cycles per day; the value of k decreased to 0.58 at a frequency of 2.38 x lo6 cycles per day. EXPERIMENTAL PROCEDURE Three SAP alloys, of two nominal compositions, were tested. Alcoa supplied XAP 005 as 2-in.-diam extruded bar, of nominal composition A1-7 wt pct A1203. The Danish Atomic Energy Commission supplied SAP 930 (A1-7 wt ~ct Ala3) and SAP 865 (A1-13 wt pct Al&) manufactured by Swiss Aluminium Ltd., in the form Of $-in.-diam extruded rod. Metallographic comparison of the structures of XAP 005 and SAP 930 showed the former to have a more uniform oxide distribution. Button-head specimens were machined in the longitudinal direction of the bar with 0.4 in. gage length by 0.2 in. diameter, with a fillet radius of j-B in. After machining, the specimens were electropolished in a 1 to 4 mixture of perchloric acid to methanol to remove all machining marks. All test bars were in the as-extruded condition. The fatigue tests were performed on a hydraulically activated, axial strain machine, with complete reversal of strain.15 Test conditions were:
Citation
APA:
(1969) Part VIII – August 1968 - Papers - Effect of Strain Rate and Temperature at High Strains on Fatigue Behavior of SAP AlloysMLA: Part VIII – August 1968 - Papers - Effect of Strain Rate and Temperature at High Strains on Fatigue Behavior of SAP Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.