Part VIII – August 1968 - Papers - Experimental Study of Solidification of Aluminum-Copper Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 413 KB
- Publication Date:
- Jan 1, 1969
Abstract
A series of experiments were carried out in which the rates of propagation of the liquidus and the eutectic fronts Mere measured during essentially one-dimensional freezing of Al-Cu alloys. The dimensions of the ingots were 3 by 5 by 6 in. Three different alloys containing 0.1, 4.5, and 17 pct Cu were used in these experitments. For each alloy the rate of heat removal was varied to give a total jreezing time in the range 3 to 30 min. The results of these measurements cowlpared favorably with the theoretical model of freezing of binary alloys with time-dependent surface temperature. IN engineering analysis of solidification of commercia1 steels and nonferrous alloys it is a common practice to assume that an alloy freezes by propagation of an isothermal solidification front, i.e., essentially as a pure metal. In two recent theoretical investigations'j2 the present authors explored the possibility of a more realistic approach to the problem of solidification of alloys. In the proposed model the freezing of an alloy is assumed to take place by propagation of two isothermal fronts, i.e., the liquidus front and the solidus (or eutectic) front. The region between the two fronts contains both liquid and solid and is referred to as the solid-liquid region. The width and the solid content of the solid-liquid region vary with alloy type, solute concentration, and cooling rate. For a given alloy system, initial concentration of solute, and the mode of heat removal, the proposed model yields the temperature distribution within the solid skin, temperature, solid fraction, and concentration distributions with the solid-liquid region, and the rates of propagation of the liquidus and the solidus fronts. This model is obviously of considerable practical importance in engineering analysis of solidification processes, since it gives a more realistic estimate of skin strength during solidification and a better estimate of the total freezing time. Before the new model can be used with confidence, however, it is necessary to test this model experimentally. The experimental testing of the proposed model is a relatively simple matter since the effects to be measured are large and a relatively simple experiment will suffice. The theoretical model predicts, for example, that during freezing of an alloy containing substitutional type solute (negligible diffusion in the solid during freezing) the solid-liquid region occupies an appreciable portion of the ingot, even at low concentration of solute.' Another prediction of the theo- V. KOUMP, formerly with U. S. Steel Corp., is now with Research and Development Center, Systems and Process Division, Westinghouse Electric Corp., Pittsburgh, Pa. R. H. TlEN is Senior Scientist, Fundamental Research Laboratory, U. S. Steel Corp., Research Center, Monroe ville, Pa. T. F. PERZAK, formerly with U.S. Steel Corp., is now with Fiber Industries, Greenville, S. C. Manuscript submitted March 6, 1968. IMD retical model, easily verifiable by experiment, is that the rate of propagation of the solidus (or eutectic) front increases as the solidus front approaches the center of the slab. This prediction is contrary to well-known behavior of the solidification front during freezing of pure metals, where the rate of propagation of the solidification front decreases with time and freezing is completed at the lowest rate. A rather severe test of the proposed model is provided by comparison of theoretical predictions and experimental measurements of the effects of cooling rate and composition on the rates of propagation of the liquidus and the eutectic fronts. In order to test the soundness of the formulation and the method of solution of the problem of solidification of alloys a series of experiments were carried out in which the rates of propagation of the liquidus and the eutectic fronts were measured during essentially one-dimensional solidification of A1-Cu alloys. The A1-Cu system was chosen strictly as a matter of convenience. Three different alloys containing 0.1, 4.5, and 17 pct Cu were used in these experiments. For each alloy the rate of heat removal was varied to give the total freezing time in the range 3 to 30 min. The results of these measurements are compared with the predictions of the theoretical model of solidification of binary alloys, with time-dependent surface temperature.' Before the experiments described in this paper were undertaken, a serious attempt was made to utilize the measurements of previous investigators to test the theoretical model. In the course of this preliminary study a careful review was made of experiments of Pellini and coworkers3 and Doherty and Melf~rd.~ The measurements in Pellini's work were carried out using a steel containing at least four major components. Evaluation of the solid fraction-temperature relation for this steel (required in the theoretical model) is difficult and uncertain. Doherty and Melford, on the other hand, measured the solid fraction-temperature relation experimentally, but did not give sufficient data to explore the effects of composition and the cooling rates on solidification. Hence it was not possible to utilize these measurements to test our theoretical model. EXPERIMENTAL METHOD The experimental technique used in this investigation differs somewhat from the more conventional techniques employed in solidification studies. This technique was developed primarily to eliminate con-vective mixing in the molten metal caused by pouring of molten metal into the mold. In our experiments A1-Cu alloys were melted directly in the mold. The mold assembly used in solidification experiments is shown in Fig. 1. The mold was fabricated from *-in. stainless-steel sheet. The dimensions of
Citation
APA:
(1969) Part VIII – August 1968 - Papers - Experimental Study of Solidification of Aluminum-Copper AlloysMLA: Part VIII – August 1968 - Papers - Experimental Study of Solidification of Aluminum-Copper Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.