Part VIII – August 1968 - Papers - Iron-Sulfur System. Part I: Growth Rate of Ferrous Sulfide on Iron and Diffusivities of Iron in Ferrous Sulfide

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 507 KB
- Publication Date:
- Jan 1, 1969
Abstract
The activity of sulfur was determined as a function of composition of ferrous sulfide by equilibrating with hydrogen sulfide-hydrogen gas mixtures at 670° , 800°, and 900". The present results supplement the available data over the composition range from 36.6 to 39.5 pct S. The X-ray lattice spacing measurements made are in accord with the available data and indicate that the limiting composition FeSl.008 may be taken for the iron-iron sulfide equilibrium. The growth rate of ferrous sulfide on iron was measured by reacting iron strips or blocks in hydrogen sulfide-hydrogen gas mixtures. Owing to the slow approach to equilibrium between the gas phase and the surface of the sulfide layer, The sulfidation experiments were carried out for several days. It is shown that the growth rate ullimately proceeds in accordance wilh the parabolic rate law. From the parabolic rate constants and the thermodynamic data on iron sulfide the self-difiusivity and chemical diffusivity of iron in ferrous bisulfide are evalualed. The self-diffusivity of iron thus derived zs found to increase with increasing sulfur content. THE ferrous sulfide known as "pyrrhotite" is a non-stoichiometric phase having a wide composition range from about 50 to about 58 or 60 at. pct, depending on the sulfur activity. RosenQvistl studied the thermodynamics of this phase over wide ranges of temperature and composition. Hauffe and Rahmel' and Meussner and ~irchenall~ studied the parabolic rate of sulfidation of iron in sulfur vapor. By using markers, these investigators showed that the iron cations were the predominant diffusing species in iron sulfide. This is confirmed decisively by the self-diffusivity measurements of condit4 who showed that the self-diffusivity of sulfur in ferrous sulfide is several orders of magnitude lower than the self-diffusivity of iron. Although much has been learned from these studies about the Fe-S system, further research on this subject was considered desirable for better understanding of the physical chemistry of iron sulfide. This work was confined to the study of the kinetics of sulfidation of iron in hydrogen sulfide-hydrogen gas mixtures. The results of this study are given in two consecutive parts. Part I, the present paper, is on the parabolic rate of sulfidation of iron and the diffusivity of iron in ferrous sulfide. The second paper, Part 11, is on the kinetics of the surface reaction between hydrogen sulfide and ferrous sulfide. EXPERIMENTAL Three types of experiments were carried out: i) equilibration of ferrous sulfide with gas of known E. T. TURKDOGAN, member AIME, is Manager,Chemical Metallurgy Division, Edgar C. Bain Laboratory for Fundamental Research, U. S. Steel Corp., Research Center, Monroeville, Pa. Manuscript submitted March 6. 1968. ISD sulfur potential; ii) X-ray studies of ferrous sulfide; and iii) measurements of the parabolic rate of sulfidation of iron. Equilibrium Studies. About 1 g of iron powder or foil. contained in a small recrystallized alumina crucible ind suspended from a calibrated silica spring, was reacted with a hydrogen sulfide-hydrogen mixture of known ratio until no further change in weight was observed. %hen the gas composition was changed and the new state of equilibrium was established after several hours of reaction time. The composition of the sulfide was obtained from the initial weight of the sample and the weight after equilibration. X-Ray Studies. The lattice parameters of some of the equilibrated samples were determined using the General Electric XRD-5 diffractometer with a cobalt tube (no filter) set at 40 kv apd 10 ma; the CoK, radiation was taken as 1.79020A. Observed 220 and 311 diffraction peaks of silicon served as an internal comparison standard to correct for possible misalignment of the goniometer. The lattice parameters of the sulfide phase were calculated from the corrected Bragg angles of the 110 and 102 peaks. Rate Studies. In the initial experiments attempts were made to measure the parabolic rate of sulfidation by measuring the gain in weight of a thin iron strip, -0.05 cm thick, suspended from a silica spring in the reacting atmosphere. The preliminary experiments showed that this technique was not reliable for the measurement of the parabolic growth rate of the iron sulfide layer. In the subsequent experiments the data on growth rate were obtained by measuring, on a microscope stage, change in the thickness of the sample after reaction for a specified time in a hydrogen sulfide-hydrogen mixture of known sulfur activity. For each reaction time a new sample was used. Precision-machined iron blocks, 0.5 by 2 by 5 cu cm, were de-greased and annealed in hydrogen for several hours prior to the sulfidation rate measurements. The experiments were carried out at 670°, 800°, and 900°C in gas mixtures having the ratios, and 1.0 for periods of times from a few hours up to 8 days. Apparatus and Materials. A vertical globar tube furnace with a 3-in.-long uniform temperature zone was used. The glass tube fittings were fused on the zircon reaction tube, 1.5 in. diam. The temperature was measured with a Pt-10 pct Rh/Pt thermocouple placed in the hot zone of the furnace inside the reaction tube (an alumina thermocouple sheath was used). A separate thermocouple was used for the temperature controller which maintained the furnace temperature constant within about 2°C. Anhydrous liquid hydrogen sulfide and oxygen-free dry hydrogen from gas tanks were used in preparing the gas mixtures by the constant head capillary flow-meters. In all cases volume flow rate was 1000 cu cm per min at stp, corresponding to a linear velocity of about 6 cm per sec at 800°C; under these conditions
Citation
APA:
(1969) Part VIII – August 1968 - Papers - Iron-Sulfur System. Part I: Growth Rate of Ferrous Sulfide on Iron and Diffusivities of Iron in Ferrous SulfideMLA: Part VIII – August 1968 - Papers - Iron-Sulfur System. Part I: Growth Rate of Ferrous Sulfide on Iron and Diffusivities of Iron in Ferrous Sulfide. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.