Part VIII – August 1968 - Papers - The Strengthening Mechanism in Spheroidized Carbon Steels

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 683 KB
- Publication Date:
- Jan 1, 1969
Abstract
The deformation behavior in tension of spheroidized carbon steels was studied at room temperature as a function of carbon content, 0.065 to 1.46 wt Pct, and carbide particle size, 0.88 to 2.77 p. It was found that the Hall-Petch strength-grain size relation is directly applicable to the yield and flow stresses of the two lower-carbon steels , 0.065 and 0.30 pct C. The strength data for the medium- and high-carbon steels, 0.55 to 1.46 pct C, also satisfied the Hall-Petch relation, provided that these data are based upon the particle spacing. Beyond 4 pct strain, the flow stress data of all the steels studied could be represented by the same Hall-Petch relation with dinerent spacings for grain boundary and particle strengthening. The behavior of the higher-carbon steels was consistent with the postulated formation of a dislocation cell network during processing and initial deformation (up to 4 pct strain). The cell size was assumed to be equal to the planar particle spacing. The true stress at the ultimate tensile strength was also found to be a function of the particle spacing. At a given temperature and strain rate, the yield and flow stresses of carbon steels depend on the type and dimensions of the microstructure. Starting with the work of Gensamer et al. in 1942,' experimental studies on pearlitic and spheroidized carbon steels revealed that the strength of steels is a function of two main parameters: the ferrite grain size2'3 and the carbide particle spacing;1'4'5 on this basis, two different strengthening mechanisms have been developed to apply to steels of low and high carbon contents, respectively. In polycrystalline iron and mild steels the grain boundaries are regarded as the major structural barriers to slip. The relation between strength and grain size is generally represented by the Hall-Petch equation which is based on a linear proportionality between strength and the inverse square root of the average grain size.2'3y677 However, Gensamer et al.' and Roberts et related the yield strength of medium -and high-carbon steels to the carbide particle spacing alone, and they found a linear relation between the logarithm of the mean free path in the ferrite and the yield strength in both spheroidized and pearlitic steels. By means of the electron microscope, Turkalo and LOW' extended the study to finer structures; they concluded that the logarithmic relation is not valid for the entire range of microstructures unless grain boundaries are also included in the measurement of the mean free path. For the specific case of spheroidized steels, Ansell and aenel' found that the yield strength data,4'5 when plotted as a function of mean free path, fit the Hall-Petch equation; however, T'ysong found that the same data fit the 0rowanl0 relation if a planar inter-particle spacing is used. Recently Kossowsky and ~rown" studied the strength of prestrained spheroidized steels, 0.48 and 0.95 pct C, and concluded that the strength due to the carbide dispersions varies linearly with the reciprocal of the square root of the mean free path between carbide particles and dislocation networks. Such networks were first observed by Turkalo." The conclusion common to all these studies is that the available slip distance in the ferrite is the most important variable in determining strendh. Previous work on carbon steels is restricted to limited composition and strain ranges. The mechanism which governs the flow properties is not clearly understood, and, in particular, little is known about the composition dependence of the transition between grain boundary strengthening and particle hardening. The purpose of the present work is to investigate the strengthening mechanism in spheroidized steels over a wide range of carbon content, 0.065 to 1.46 wt pct, and plastic strain, yielding to necking. The spheroidized structure was chosen because of its relative simplicity and the relative ease of control and measurement of the structural parameters. The experimental work is limited to tensile testing at room temperature at constant extension rate. The effects of the carbide particles on the fracture behavior of spheroidized steels are discussed elsewhere.13 EXPERIMENTAL PROCEDURE Eight different grades of vacuum-cast carbon steels were supplied in the form of forged and rolled plate by the Applied Research Laboratory of the U.S. Steel Corp. The compositions furnished with these steels are given in Table I; the carbon content ranges from 0.065 to 1.46 wt pct, or from 1.0 to 22.3 vol pct of carbide. The steel plates were cut transversely into rods a little larger than the test specimens, 1 in. gage length, i in. diam. The rods were austenitized in air (enriched with CO by a consumable carbon-rich muffle) at 50° C above theA, orA., temperature for 2 hr and then quenched in oil with vigorous stirring. The as-quenched rods were tempered in two stages in order to obtain the desired distributions and sizes of carbide particles. The rods were first tempered at 460° C for 10 hr and then at 700" C for periods ranging from 4 hr to 3 days, in vacuum. After final machining, all specimens were vacuum-annealed again at 650°C for 1 hr in order to relieve residual stresses. The tension tests were carried out in two steps. The initial part of the load-strain curve, up to about 2 pct strain, was determined on a Riehle testing machine with an extensometer of small strain range, 4 pct strain, in order to obtain the yield and initial flow piopertiesi As soon as the first part of the test was finished, the specimen was placed in an Instron testing machine equipped with a strain gage extensometer with a maximum strain range of 50 pct. The load-strain curve to fracture was
Citation
APA:
(1969) Part VIII – August 1968 - Papers - The Strengthening Mechanism in Spheroidized Carbon SteelsMLA: Part VIII – August 1968 - Papers - The Strengthening Mechanism in Spheroidized Carbon Steels. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.