Part VIII – August 1968 - Papers - Ultrasonic Attenuation Studies of Mixed Microstructures in Steel

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 9
- File Size:
- 694 KB
- Publication Date:
- Jan 1, 1969
Abstract
Ultrasonic attenuation, a, measurements in the frequency range of 5 to 55 mc per sec have been studied to determine their quantitative relationship with the following three variables of mixed microstructures in steels: 1) the volume percent, XF, of polygonal fer-rite in mixed structures of martensite and polygonal ferrite in Fe-Mo-B alloys: 2) volume percent, XA, of retained austenite plus martensite aggregates in high-carbon steel; and 3) substructural differences between 100 pct bainitic ferrite structures formed at various temperatures. The quantitative relationship obtained in the first two conditions by plotting a us the known structural parameters can be expressed, respectively, as: where al, a 2 and C1, Cz are constants. In the third condition the nature of the attenuation depends on the state of dislocations generated at the transformation temperatures and also on the alloy composition. From these measured results, the mechanism of ultrasonic attenuation caused by these mixed microstructures can also be studied. MUCH interest has recently been shown in the application of ultrasonic attenuation and wave velocity measurements to the study of the microstructural characteristics of steels. The general aims of most of the investigations in this field can be grouped into two categories: one is to study the mechanisms of ultrasonic losses caused by the characteristic phases in the microstructure of steel,''' and the other is to develop nondestructive test methods and applications for quality control.~' 4 Apparently no work has been done on the evaluation of ultrasonic attenuation meas -urements as a means of quantitative determination of a given phase in the microstructure of a steel. It is well-established that the decomposition of austenite results in four main microstructural constituents—polygonal ferrite, pearlite, bainite, and martensite—and that each phase has different mechanical properties. Thus, when a steel consists of mixed microstructures, the mechanical properties can often be related to a quantitative measure of the volume percent of each phase present. This study relates ultrasonic attenuation measurements to: 1) the volume percent of polygonal ferrite in mixtures of martensite and polygonal ferrite in Fe-Mo-B alloys; 2) the substructural differences between 100 pct bainitic ferrite structures formed at various temperatures; and 3) the vol- ume percent of austenite in austenite plus martensite aggregates in a high-carbon steel. The choice of the specimen materials was based on the laboratory stocks which were suitable to produce the required mixed microstructures for this study. EXPERIMENTAL PROCEDURES Materials and Heat Treatment. Polygonal Ferrite Plus Martensite Structures. This mixture of phases was produced in a vacuum-melted Fe-Mo-B alloy. The alloy was hammer-forged at 1900" ~ to a -f-in.-sq bar. By isothermally heat treating the alloy at 1300° F for various times and then water quenching, variations in the amount of polygonal (or proeutectoid) ferrite can be controlled in a microstructure in which the balance of the material is martensite. In the present work, four different times of isothermal transformation were adopted; after heat treatment, the four specimens were machined for ultrasonic measurements. The compositions, heat treatments, and dimensions of the four specimens are listed in Table I. 100 pct Bainite Structures Formed at Different Temperatures. It has been well-established by Irvine et al.= that the presence of molybdenum and boron in ferrous alloys can retard the formation of polygonal proeutectoid ferrite and expose the bainitic transformation bay, so that a more acicular or bainitic ferrite can be obtained over a wide range of cooling rates. Their investigation6 also showed that the mechanical properties of fully bainitic steels are usually closely dependent on the substructural characteristics of the steels. For studying the substructural characteristics in completely bainitic structures, six Fe-Ni-Mo alloys, of which five were free from carbon addition and one with 0.055 pct C addition, were selected so that a wide range of hardness values for 100 pct bainitic ferrite structures could be produced by normalizing at 1900" F followed by air cooling. The different bainitic transformation temperatures were recorded during air cooling. All of the alloys were vacuum-melted and then forged at 1900" F to square bars. Data on the six specimens of these structure series are summarized in Table 11. Austenite Plus Martensite Structures. The high-carbon steel used to study austenite plus martensite structures was vacuum-melted and then forged into Q-in.-sq bar. The series of mixed structures of austenite plus martensite was produced by quenching the specimens from the austenitizing temperature to room temperature and then refrigerating them at various temperatures within the range of martensite transformation to produce different amounts of retained austenite. Data on the four specimens of this series are listed in Table 111. Quantitative Analysis of the Microstructures. The microstructures containing martensite plus polygonal ferrite were analyzed by the point-counting technique.
Citation
APA:
(1969) Part VIII – August 1968 - Papers - Ultrasonic Attenuation Studies of Mixed Microstructures in SteelMLA: Part VIII – August 1968 - Papers - Ultrasonic Attenuation Studies of Mixed Microstructures in Steel. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.