Part VIII – August 1969 – Papers - The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 365 KB
- Publication Date:
- Jan 1, 1970
Abstract
Electrochemical measurements have been made of the activity of oxygen in copper and its alloys with silver and tin at 1100" and 1200°C. The galvanic cell used was Pt, Ni + NiO/solid ellectrolyte/[O] in metal, cermet, Pt The results do not support any of the equations so far designed for predicting the activities of dilute solutes in ternary solutions from activities in the corresponding binaries. If, however, a quasichemical equation is used with the coordination number set to unity, agreement between observed and calculated activities shows that this empirical relationship can be useful over a fair range of conditions. SEVERAL solution models have been proposed for predicting the activity coefficients of dilute solutes in ternary alloys from a knowledge of the three binary systems involved. Alcock and Richardson1 have shown that a regular model, and a quasichemical model,' in which the dissolved oxygen is coordinated with eight or so metal atoms, can reasonably predict the behavior of both metal and nonmetal solutes when the heats of solution of the solute in the separate solvent metals are similar. But when this is not so, neither model gives useful predictions unless coordination numbers of one or two are assumed. Wada and Saito3 subsequently adopted a similar model to derive the interaction energies for two dilute solutes in a solvent metal. Belton and Tankins4 Rave proposed both regular and quasichemical type models in which the oxygen is bound into molecular species, such as NiO and CuO in mixtures of Cu + Ni + 0. However, their models have only been tested on systems in which the excess free energies of solution of the solute in the two separate metals differ by a few kilocalories. Ope of the reasons why more advanced models have not been proposed is because few complete sets of data exist for ternary systems in which the solute behaves very differently in the two separate metals. For this reason measurements have been made of the activities of oxygen dissolved in Cu + Ag and Cu + Sn. Measurements on both systems were made by means of the electrochemical cell, Pt, Ni + NiO/solid electrolyte/O(in alloy), cermet,Pt [1] The activity of oxygen was calculated from the electromotive force and the standard free energy of formation of NiO, which is accurately known.5 Before investigating the alloys, studies were made of oxygen in copper to test the reliability of the cell and to check the thermodynamics of the system. Of the previous studies those by Sano and Sakao,6 Tom-linson and Young,7 and Tankins et al.8,7 have been made with gas-metal equilibrium techniques; those by Diaz and Richardson,9 Osterwald,10 wilder," Plusch-kell and Engell,12 Rickert and wagner,13 and Fischer and Ackermann14 have been made by electrochemical methods. EXPERIMENTAL The apparatus employed was the same as described previously,9 apart from slight modification. The molten sample of approximately 40 g was held in a high grade alumina crucible 1.2 in. OD and 1.6 in. long. The solid electrolytes were ZrO2 + 7½ wt pct CaO and ZrO2 + 15 wt pct CaO; the tubes 4 in. OD and 6 in. long were supplied by the Zirconia Corp. of America. They were closed (flat) at one end. In one experiment with Cu + O, both electrolytes were used in the cell at the same time. The reference electrodes inside the electrolyte tubes consisted of a mixture of Ni + NiO. They were made by mixing the powdered materials and pressing them manually into the ends of the tubes, with a platinum lead embedded in them. The tubes were then sintered overnight in the electromotive force apparatus at 1100°C. By sintering the powders inside the tubes (instead of using a presintered pellet9) better contacts were obtained between the electrolyte, the powder, and the platinum lead. Troubles arising from polarization9 were thus much reduced. The electromotive force was measured by a Vibron Electrometer with an input impedence of 1017 ohm; the temperature was measured with a Pt:13 pct Rh + Pt thermocouple protected by an alumina sheath. The couple was calibrated against the melting point of copper. The cermet conducting lead of Cr + 28 pct Al2O3, previously found to be satisfactory9 for use with Cu + 0 was also found satisfactory with Cu + Ag + 0 and Cu + Sn + 0. Superficial oxidation was observed, but it did not interfere with the working of the cell. The reaction tube containing the cell was closed at each end with cooled brass heads and suspended in a platinum resistance furnace. The tube was electrically shielded by a Kanthal A-1 ribbon which was wound round it, and the ribbon was protected by a N2 atmosphere between the furnace and the reaction tube. The cell was protected by a stream of high purity argon which was dried and passed through copper gauze at 450°C and titanium chips at 900°C. All the metals used were of spectrographic standard. Procedure. In studies of the system Cu + 0, be-
Citation
APA:
(1970) Part VIII – August 1969 – Papers - The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and TinMLA: Part VIII – August 1969 – Papers - The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.