Part VIII – August 1969 – Papers - The Undercooling of Cu-20 Wt Pct Ag Alloy

The American Institute of Mining, Metallurgical, and Petroleum Engineers
G. L. F. Powell
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
570 KB
Publication Date:
Jan 1, 1970

Abstract

g samples of Cu-20 wt pct Ag alloy have been mdercooled to a maximum of 197°C by melting under a slag of commercial soda-lime glass in a vitreous silica crucible. No grain refinement of the primary copper was observed in samples undercooled to the maximum of 197°C. When the samples contained a small amount of oxygen, the copper dendrites were partially recrystallized at undercoolings greater than 97°C. In previous papers'-3 reporting the grain structure of undercooled silver and copper, it was observed that grain refinement was dependent on both undercooling and oxygen content. Grain refinement occurred in undercooled silver when the degree of undercooling exceeded the range 153" to 175"C, while in Ag-0 alloys (0.12 wt pct) fine equiaxed grains were exhibited when undercooling was greater than 50°C. Similarly, copper samples undercooled as much as 208°C displayed fan-shaped growth from a single nucleation site, while the grain structure of Cu-O alloys (0.08 wt pct) was fine and equiaxed at undercoolings larger than 150°C. Thus the presence of oxygen greatly reduced the undercooling at which grain refinement occurred. It was also observed that the change in grain size resulted from recrystallization and was not due to an enhanced nucleation rate in the liquid-solid transformation. It is possible that the influence of oxygen on recrystallization is due primarily to its presence as a solute element. walker4,' reported that, although a grain size change did not occur in pure nickel until the undercooling exceeded 150°C, small grains were observed in samples of Ni-Cu alloy solidified at small and large degrees of undercooling. Jackson et al.6 suggested that the fine grained structure of the Ni-Cu alloy resulted from the melting off of dendrite arms during recalescence. This remelting process may occur in alloys as a result of segregation during freezing which causes a variation in liquidus temperature from point to point within a dendrite. It was therefore decided to undercool copper with a metallic alloying element to ascertain whether the presence of a metallic solute would have a similar effect to oxygen in inducing grain refinement. A Cu-Ag alloy was chosen, since both metals had been shown to behave similarly on undercooling. The alloy Cu-20 wt pct Ag was selected since the eutectic constituent outlines the initial growth form of the primary copper, so that the as-frozen grain structure is not obscured if subsequent recrystallization occurs. This paper describes the results of undercooling experiments carried out with Cu-20 pct Ag samples undercooled to a maximum of 197°C and the effect of oxygen content on the grain structure of the undercooled samples. EXPERIMENTAL Melting was carried out in a small cylindrical resistance furnace using "fine" silver granulate and oxygen-free high conductivity copper. The procedure adopted was to melt the required quantity of silver in air in a clean vitreous silica crucible for approximately 15 min, freeze, and add granulated commercial soda-lime glass to form a complete surface slag cover, after which the sample was melted and frozen several times to reduce the oxygen content. The glass slag cover was approximately 3 in. thick. Pieces of copper (=50 g) were added to the crucible until the required quantity to make 350-g samples of alloy had been charged. Each piece was added quickly to the crucible which was held at a temperature slightly above the melting point of silver. The piece was quickly pushed beneath the glass to minimize oxidation and any oxide coating usually decomposed before the piece had settled down into the silver. After the full quantity of copper had been added, the melt was stirred with a silica rod to hasten homogenization and a Pt/Pt 13 pct Rh thermocouple enclosed in a vitreous silica sheath inserted for temperature measurement. Heating and cooling curves were recorded on a potentiometric chart recorder fitted with a zero suppression unit. The milli-voltage range of the recorder was adjusted so that temperatures could be read to 1°C. Heating and cooling curves were taken every hour until three consecutive readings gave the same solidus-liquidus range, consistent with the solidus-liquidus range for this alloy composition by reference to Hansen and Anderko.7 Metallographic examination of samples frozen at this stage, failed to show any variation in composition from bottom to top of the ingot. Consequently, it was considered that the melt was homogeneous at this stage and undercooling experiments were then car-
Citation

APA: G. L. F. Powell  (1970)  Part VIII – August 1969 – Papers - The Undercooling of Cu-20 Wt Pct Ag Alloy

MLA: G. L. F. Powell Part VIII – August 1969 – Papers - The Undercooling of Cu-20 Wt Pct Ag Alloy. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1970.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account