Part VIII - Papers - Solidification Structures in Directionally Frozen Ingots

The American Institute of Mining, Metallurgical, and Petroleum Engineers
C. W. Haworth B. F. Oliver
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
8
File Size:
1603 KB
Publication Date:
Jan 1, 1968

Abstract

Pure tin and Sn-0.5pct Pb ingots have been frozen unidirectionally from the base. For quiescent melts that were initially undercooled, a transition from lower eqlciaxed structure to an upper columnar structure is found in the alloy ingots. Columnar to equi-axed back to columnar transitions are observed in superheated alloy ingots, but no such equiaxed band is observed impure tin. The reproducible equiaxed band is associated with a thermal undercooling followed by a recalescence. This undercooling is <5"C, whereas the critical (maximum obtainable) under-cooling for both the pure tin and the alloys used is -20°C. A similar undercooling is observed at the same position in the pure tin ingots, although in this case no clear transition in structure can be seen. The structure of the pure tin ingots is either entirely columnar or mixed columnar-equiaxed. A consideration of the detailed thermal history of the ingots indicates that the ingot macrostructures are determined by the occurrence of a local therlnal undercooling in conjunction with nuclei multiplication and transport mechanisrris. GENERALLY it is found that a pure metal ingot solidifies so as to produce an entirely columnar structure. Frequently an alloy ingot is found to have a columnar outer zone and an equiaxed central portion. Early systematic work to examine the factors controlling the formation of the equiaxed structure was reported by Northcott&apos; who showed that, for copper alloys frozen unidirectionally with a given ingot practice, the alloying element influenced the length of columnar crystals and the extent of the equiaxed structure. Northcott showed that alloys with a wider freezing range more readily produced the equiaxed structure. The nucleation process can be important in producing equiaxed structures; frequently an alloy which readily solidifies with an entirely columnar structure will produce an entirely equiaxed structure when a nucleating agent is added to the melt.&apos; The formation of the equiaxed structure was attributed by Winegard and chalmers3 to the presence of constitutional supercooling; that is, a region of liquid in front of the growing solid could have a temperature below its equilibrium liquidus temperature. Thus, with a small enough temperature gradient in the liquid, it was suggested that the presence of constitutional supercooling may be sufficient to bring about the nuclea-tion necessary for the formation of an equiaxed structure. Although this explanation is plausible, and may be relevant in many ingots, Walker has described an experiment&apos; for which constitutional supercooling seems to be an unlikely cause of nucleation. A Ni-20 pct Cu alloy, repeatedly undercooled more than 50"C, was crystallized and found to show the typical colum-nar-equiaxed structure. The separation between the liquidus and the solidus for the alloy is 40°C. Thus, in this experiment the nucleation required for the formation of the equiaxed structure must have come about in some other way than by the nucleation catalysis constitutional supercooling hypothesis. Chalmers has suggested more recently5 that nuclei (in a typical ingot) are present immediately after pouring and are prevented from redissolving by the constitutional supercooling effect. More recently Uhlman, Seward, Jackson, and ~unt&apos; have shown direct evidence using ice and organic materials that freeze dendritically that the "remelt mechanism" may be an extremely effective crystal multiplication process during the freezing of ingots under conditions involving dendritic growth. JSlia" experimentally demonstrated the detachment of dendrite arms. chernov14 has analyzed the dendrite arm detachment process as a coarsening phenomena driven by the minimization of interphase area. Katta-mis and ~lemings" working with undercooled steel melts give evidence supporting this mechanism. Mechanisms of dendrite arm detachment such as those assisted by convection are believed to be the origin of the macrostructures obtained in this study. This study makes no attempt to distinguish the relative contributions of these mechanisms. The object of the present work was to obtain accurate temperature measurements during the solidification of an ingot and to correlate these measurements with the formation of equiaxed grains in the resulting ingot structures. Similar previous work is very limited. The measurements carried out by Northcott are neither sufficiently extensive nor sufficiently accurate for any interpretation. Plaskett and winegard7 carried out experiments on A1-Mg alloys in which they observed values of the temperature gradient, G, in the liquid and rate of freezing, R (for a given alloy solute content Co), at the transition from a columnar to an equiaxed structure. They reported that equiaxed crystals were produced at values of G/G approximately proportional to the solidus composition. Similar experiments using Pb-Sn alloys carried out by £111011" showed a linear relation between G/R and the solidus composition. However, the thermocouples were in the mold wall rather than in the melt and, in one case, ingot surfaces were examined. There is ambiguity in the meaning of the values of G and R measured in all these experiments. APPARATUS AND EXPERIMENTAL PROCEDURE Alloys were prepared by induction melting 99.999 pct Sn and 99.999 pct Pb to form a Sn-0.5 wt pct Pb alloy in air in a graphite crucible and casting into a cylindrical graphite mold 6 in. long, 1 in. in diarn , and with a & in. wall thickness. This mold was mounted on a copper base through which cooling water could be
Citation

APA: C. W. Haworth B. F. Oliver  (1968)  Part VIII - Papers - Solidification Structures in Directionally Frozen Ingots

MLA: C. W. Haworth B. F. Oliver Part VIII - Papers - Solidification Structures in Directionally Frozen Ingots. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1968.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account