Part VIII - Titanium-Rich End of the Titanium-Aluminum Equilibrium Diagram

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 12
- File Size:
- 2680 KB
- Publication Date:
- Jan 1, 1967
Abstract
The titanium-rich end of the Ti-A1 system has been investigated up to 35 at. pct A1 (23 wt pet). One conzpound Ti3Al was found to occur between primary a and TiAl. It is ordered hcp with DO19 structure, it has virtually no solid-solubility range, and it has a closed maximum at about 875°C. OIL either side of the compound are a +Ti3Al two-phase fields. The limiting a1uminum solubility in primary a at the titanium-rich end is indicated to be 7.5 at. pct A1 (4.4 wt pet) at 550°C and about 6.8 at. pct Al fl wt pct) at 500°C. Quenching alloys from above the a + Ti3Al two-phase field produces the following structures with respect to alloy composition: Up to 13 at. pct A1 (7.8 wt pet), a solid solution; from 15 to 18 at. pct A1 (9 to 11 wt pct), shear transformation product or martensite; from 19 to approximately 30 at. pct (11 to 19 wt pet), submicro-scopic coherent Ti3Al in an a malvix. The twin hcp phase fields reported in the literature are the result of nonequilibrium corzdztions. Ti-A1 alloys, once partitioned by dwelling- in the a + ß phase field during either hot working or heat treatment, are extremely difjicult to homogenize at temperatures below 1000°C. Such partitioned alloys exhibit the characteristics or symptoms of two-phase materials, and may be said to suffer the "twin-phase syndrome". THE earliest investigations of the Ti-A1 system by Ogden et al.1 and Bumps et al.2 reported wide solubility of the primary solid solutions. Aluminum was reported soluble in the low-temperature allomorph to the extent of 37 at. pct (25 wt pct), and the first intermediate phase was reportedly TiA1. Somewhat later Kornilov et al.3 reported a similar diagram with phase boundaries displaced towards lower aluminum contents and higher temperatures. Beginning about this time (1956) reports in the literature made it very clear that one or more intermediate phases occurred at lower aluminum contents than TiAl.4-17 These reports included five major investigations of the titanium-rich end of the Ti-A1 diagram.4,12,14,16,17 Three of these diagrams show two two-phase fields below 37 at. pct Al, while two of them show a single two-phase field. The existence of the phase Ti3A1 is firmly established and is included in each of the diagrams, except one—that of Sato and Huang.12 The new phases are reportedly hcp and differ from primary a only slightly when disordered, and when ordered the "a" parameter is approximately one,4,12,15 two, 6-10,13,14 or four14 times that for primary a. Beyond this, however, the diagrams are remarkable for their lack of agreement. Two tacit assumptions are usually made in phase-diagram determinations of metal systems. These are: 1) equilibrium anneals bring the alloy to equilibrium or to indistinguishable closeness to it, and 2) equilibrium conditions established at elevated temperatures are either "frozen" by rapid quenching for evaluation at room temperature, or quench-transformation products are recognized as such. In the current investigation evidence was obtained that over substantial composition ranges neither of these two conditions was met in any of the more recent major investigations. I) MATERIALS, METHODS, AND TECHNIQUES The alloys of this investigation were prepared by nonc on sum able electrode arc melting. Materials used in the preparation of the alloys are summarized in Table I. The investigative tools employed were: optical and electron microscopy, differential thermal analysis (DTA), disatometry, X-ray diffraction, electron diffraction, and resistometry. Alloys for microscopic and X-ray investigations were prepared as 15-g melts. Alloys containing from 7 through 11 at. pct A1 were hot-rolled out of a furnace at 900°C, from 12 through 15 at. pct out of a furnace at 1000°C, and from 16 through 18 at. pct out of a furnace at 1125°C. Alloys containing more than 18 at. pct A1 could not be hot-rolled. The ingots were covered with Markal coating prior to hot rolling to minimize atmospheric contamination. After hot rolling, alloys containing up to 15 at. pct A1 were ground and pickled to remove 7 mils from each surface; alloys containing 16 and 18 at. pct A1 were skinned to a
Citation
APA:
(1967) Part VIII - Titanium-Rich End of the Titanium-Aluminum Equilibrium DiagramMLA: Part VIII - Titanium-Rich End of the Titanium-Aluminum Equilibrium Diagram. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.