Part X - Electromotive-Force and Calorimetric Studies of Thermodynamic Properties of Solid and Liquid Silver-Tin Alloys

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 6
- File Size:
- 1862 KB
- Publication Date:
- Jan 1, 1967
Abstract
Using- galvanic cells of the form Sn(liq)/Sn" (LiCl-KC1-SnCl,)/Sn-Ag (alloy), measurements have been made of relative thermodynamic properties of the a, C, E, and liquid phases of the Ag-Sn alloy system. Partial heats of solution of the components in the liquid alloys lzave also been observed by direct cal-orimetric measurement in an isoperibol calorimeter. The thermodynanzic quantities are disczlssed in relation to structural and other properties and the existence of anomalous minor fluctuations in the partial heats and entropies of solution in liquid alloys is tentatively suggested. In the course of a recent electro motive-force study of the thermodynamic properties of Sn-Ag-Pd liquids,' some measurements were also performed on the Ag-Sn binary system. Most previous thermodynamic studies of this system have been concerned with the liquid state. Measurements confined to the limiting heat of solution of silver in liquid tin have been made by many calorimetric workers2 while high-temperature calorimetric measurements of the heats of formation of the full range of liquid alloys are reported in the early work of Kawakami~ (1323°K) and more recently by Wittig and Gehrin~(1248°K). Electromotive-force studies on liquid alloys have been made by Yanko, Drake, and Hovorka' (606" to 686°K; 86 to 99.4 at. pct Sn) and by Frantik and Mc Donald' (900°K; 30 to 90 at. pct Sn). The only known measurements on the solid state are of heats of formation of the a, £, and c phases; these values were obtained using tin-solution calorimetry, at 723"K, by Kleppa,~ whose investigation also yielded heats of formation of liquid alloys containing more than 64 at. pct Sn. The present experiments on the Ag-Sn alloys include a re-examination of the liquid phase and, because of the dearth of free-energy data for the solid state, attempted measurements on the a, c, and E phases. The principal new feature of electromotive-force results obtained for the liquid phase was an indication of anomalous fluctuations in the partial heats and entropies of solution of tin at certain compositions. However, since the values for these thermodynamic quantities were determined from the temperature coefficients of cell potentials, which are commonly subject to considerable error, confirmation by calorimetric measurements was considered desirable. A detailed investigation of the partial heats of solution of the components in the binary liquids was made using a liquid metal solution calorimeter. I) GALVANIC CELL STUDIES a) Experimental Details. Measurements were made, as a function of alloy composition and temperature, of the potentials of reversible galvanic cells of the form: ~n(liq)/~n++/~n-Ag (solid or liquid alloy) Details of the apparatus and experimental techniques have been given elsewhere.' so that a brief account will suffice here. Molten salt, 58 mole pct LiC1-42 mole pct KC1, containing small amounts (1 to 2 mole pct) of stannous chloride was used as the electrolyte. The salts were dehydrated by pre-electrolysis and vacuum -drying techniques. Cells were established under an argon atmosphere by immersing tin and alloy electrodes in the molten salt contained in a large silica tube, heated in a vertical resistance furnace. The tube was sealed at the top by a head plate provided with openings permitting the simultaneous insertion of six electrodes, a central thermocouple sheath, and connections to vacuum and argon lines. Temperatures were controlled to *0.2"C over prolonged periods, with maximum variation over the electrodes at any time of 0.l°C. Temperatures were measured with a standardized Pt/13 pct Rh-Pt couple. The electromotive force of this and the cell potentials were measured on a Cambridge Vernier potentiometer and short-period galvanometer. Alloys were prepared from Pass "S" tin (99.999 pct) and Johnson-Matthey high-purity silver (99.999 pct) by melting in evacuated silica capsules and quenching in cold water. For liquid phase experiments, pieces of the resulting alloys were remelted into prepared silica electrode units, while solid electrodes were prepared by remelting into 3-mm bore tubing, inserting a cleaned molybdenum lead wire, and quenching to produce uniform rods about 3 cm in length, with soundly attached leads. In all cases remelting was done under an argon atmosphere. The solid electrodes were subsequently annealed in evacu ated silica tubes for 14 days at about 20°C below the solidus and quenched. Analyses showed that these techniques produced uniform electrodes with no significant change from weighed out compositions. b) Results and Discussion. Measurements were made on about forty alloys in the solid and liquid states, over varying ranges of temperature between 550" and 1050°K. Stable, mutually consistent, and reproducible electromotive-force data were obtained with most liquid alloys and these are shown in Fig. 1. Investigations were extended below the liquidus tem-
Citation
APA:
(1967) Part X - Electromotive-Force and Calorimetric Studies of Thermodynamic Properties of Solid and Liquid Silver-Tin AlloysMLA: Part X - Electromotive-Force and Calorimetric Studies of Thermodynamic Properties of Solid and Liquid Silver-Tin Alloys. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1967.