Part X – October 1968 - Papers - Influence of Impurities, Sintering Atmosphere, Pores and Obstacles on the Electrical Conductivity of Sintered Copper

The American Institute of Mining, Metallurgical, and Petroleum Engineers
E. Klar A. B. Michael
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
285 KB
Publication Date:
Jan 1, 1969

Abstract

Differences in the electrical conductivities of copper powder sintered under reducing, selectively oxidizing, and neutral atmospheres are related to impurities in solution or as precipitated oxides. The precipitation of impurities as oxides during sintering in nitrogen is proposed for maximizing the conductivity of sintered copper. Conductivity equations for two-phase systems are summarized. Selected equations are applied to porous sintered copper and composite structures. A recent review of the influence of impurities on the electrical conductivity of copper by Gregory et al.1 emphasized that an impurity in solid solution has a much more pronounced effect on reducing the electrical conductivity than when present partly or wholly as a second phase. When impurities in solid solution can be precipitated as oxides, the copper is purified with respect to these elements and the conductivity is increased. Cast and wrought copper, therefore, frequently contain an intentional residual oxygen concentration to oxidize and precipitate impurities less noble than copper. Copper powders generally also contain impurities which can contribute to a reduction in the electrical conductivity of the sintered material. The most deleterious impurities commonly found in commercial copper powders which markedly decrease the electrical conductivity when in solid solution but which can be precipitated as oxides include iron, tin, antimony, arsenic, cobalt, and nickel. In addition to impurities, porosity in sintered copper also contributes to a reduction in the electrical conductivity. The work reported herein discusses the influence of impurities, sintering atmospheres, and porosity on the electrical conductivity of sintered copper. These are important factors for controlling the electrical conductivity of materials such as sintered copper electrical contacts. Several publications on the electrical conductivity of sintered copper and composite materials with random pores or obstacles have incorrectly considered the conductivity to be proportional to the volume fraction of conducting material. However, analyses and equations have been proposed, the earliest of which is perhaps Lord Raleigh's of 1892,' which more accurately describe the conductivity of two-phase systems. These equations which in many cases allow one to closely estimate the electrical conductivity of porous sintered materials and two-phase composites will be reviewed and related to the measured electrical conductivity of sintered copper, copper-graphite. and Ag-W composites. INFLUENCE OF IMPURITIES AND OXIDIZING, REDUCING, AND NEUTRAL ATMOSPHERES Zone-Melted and Leveled Copper. The electrical conductivities of an electrolytic copper and a lower-purity compacting grade of copper powder after consecutive treatments in reducing or selectively oxidizing atmospheres are compared in Fig. 1. The powder and drillings from the electrolytic copper ingot were melted and solidified in a graphite crucible under hydrogen. The vertical zone leveling technique of multiple passes in opposite directions was used to obtain a uniform distribution of impurities. The electrical conductivity was measured on machined specimens 3 by 0.10 in. diam of the zone-leveled material and after the same specimens were consecutively treated as follows: 1) heating in hydrogen at 1600°F for 3 hr; 2) heating in air in a sealed tube so that 0.04 pct 0 was introduced; heating was started at 1000°F for 1 hr and continued at 1800°F for 8 hr; the stepwise diffusion treatment was used to avoid loss of copper due to evaporation of copper oxide at higher temperatures; and 3) final heating in hydrogen at 1600°F for 3 hr. A L&N Kelvin Bridge, type 4306, and a test fixture with knife edges 2 in. apart were used to measure the room-temperature conductivity with an estimated accuracy of ±0.5 pct. In all cases the conductivity of the electrolytic copper was approximately 100 pct of IACS. The conductivity of the impure copper was 80 pct of IACS both in the cast state and after heating in hydrogen. However, after the heating in air, the conductivity of the impure material was 100 pct IACS. After again heating in hydrogen, the electrical conductivity decreased to 60 pct of IACS. This decrease is attributed both to the dissolution of impurities and observed intergranular cracks due to the phenomenon of hydrogen embrittle-ment in copper. These data show that the electrical conductivity of commercial copper as represented by a compacting type powder can be increased significantly by the precipitation of impurities as oxides through heat treatment in an oxidizing atmosphere. Sintered Copper Powder. A commercial compacting type of copper powder pressed to various densities was sintered either in nitrogen, dissociated ammonia, or dissociated ammonia followed by a selectively oxidizing atmosphere of air in sealed Vycor tubes so that 0.06 pct O was added to the material. The electrical conductivity was measured perpendicular to the pressing direction on as-sintered specimens of approximately 3 by 0.25 by 0.15 in. The fully dense material was obtained by zone melting and leveling
Citation

APA: E. Klar A. B. Michael  (1969)  Part X – October 1968 - Papers - Influence of Impurities, Sintering Atmosphere, Pores and Obstacles on the Electrical Conductivity of Sintered Copper

MLA: E. Klar A. B. Michael Part X – October 1968 - Papers - Influence of Impurities, Sintering Atmosphere, Pores and Obstacles on the Electrical Conductivity of Sintered Copper. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account