Part X – October 1968 - Papers - Kinetics of the Formation of MnSO4 from MnO2, Mn2O3 and Mn3O4 and its Decomposition to Mn2O3 or Mn3O4

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 5
- File Size:
- 310 KB
- Publication Date:
- Jan 1, 1969
Abstract
The kinetics of the sulfation of MnO,, MnzO3, and Mn3O4 in SO,, SO3, and O, mixtures was examined and the descending order of sulfation rates at temperatures near 400°C was found to be Mn,O3 > MnO, > Mn3O4. The respective activation energies for the thermal decomposition of MnO, and Mn,O, are 39 and 47 kcal. At 900°C, the thernzal decomposition of MnSO, to MnzO3 is slower than that to Mn3O4. The respective activation energies are 62 and 51 kcal, respectitely. MANGANESE is used to improve the hot workability of steel in the proportions of approximately 13.5 Ib of ferromanganese per ton of steel produced. This requirement accounts for about 95 pct of its large industrial market in North America. The remaining 5 pct is used in the battery and chemical industries. In most North American ores, the percentage of manganese and the manganese-to-iron ratio are not suitable for the direct production of ferromanganese. Hence, most of the North American requirements for manganese are satisfied by importing ore. Typically, many of the studies done on native low-grade manganese resources have been directed toward the production of ore substittes" and the recovery of manganese from open-hearth slags.3 Of the wide variety of processes which have been proposed, the most popular involve compounds in the Mn-S-O system. The thermodynamic properties of manganese and its compounds were reviewed by ah' in 1960 and, more recently, lngrahams discussed the thermodynamics of some of the reactions involved in the Mn-S-O system at normal roasting temperatures. The conditions for producing manganese sulfide during the reduction roasting of manganese sulfate are discussed by Fuller and Edlund.9 A novel scheme was proposed recently by zimmerley7 for utilizing waste sulfur dioxide from stack gases to recover the manganese from ocean-mined manganese nodules. Very little of the work published on manganese compounds has been related to reaction rates. Singleton et 1.' studied the rates of reaction on the MnO-C and Mn7C3-3MnO systems and observed linear and parabolic kinetics respectively in the systems. Tatievskaya et a1.' studied the low-temperature reduction of Mn&, MnO,, and Mn& in HZ and CO, and reported activation energies in the range 1628 kcal. In this paper, the rates of some of the decomposition and formation reactions involving MnSO4, MnOz, MnzO3, and Mn3O4 will be examined after the conditions for the thermodynamic stability of the individual compounds have been designated. CONDITIONS FOR STABILITY OF MnSO4, MnOz, MnZO3, AND Mn3O4 The areas of stability for h'hSO4, MnOz, MnzO3, and h3O4 were established from the data of Mah4 and Ingrahams and are shown in the predominance area diagram,10 logpq- logpsq, in Fig. 1. The diagram is drawn for two temperatures, 700°K, solid lines, and 1100°K, dotted lines. The sketch for the lower temperature includes the conditions likely to prevail in the Zimmerley patent7 when manganese nodules react with sulfur dioxide and that for the higher temperature indicates the conditions for recovering MnzO3 or Mn3O4 from MnSO4 during a roasting reaction. From the fact that the boundary between the areas of stability of MnOz and hSO4 at 700°K is parallel to the abscissa, it is evident that MnOz and SO2 should react together to produce MnSO4, irrespective of the oxygen pressure in the system. If the source of sulfur for sulfation were from waste flue gases, it is likely that the oxygen content of the gas stream would be more than sufficient to oxidize any MnsO4 to MnzO3, 107 atm of O2 required, or even to convert any Mnz03 to MnOz, 0.02 atm OZ required, prior to sulfation. At 1100°K, the diagram indicates that MnSO4 may be converted directly to either MnzO3 of Mn3O4, depending upon the prevailing partial pressure of oxygen. When the gas stream contains more than 1 pct Oz, logpq = -2, only MnzO3 would be recovered from an experiment done under equilibrium conditions. At oxygen partial pressures of less than 1 pct, one would expect to bring about a reversible exchange between MnSO4 and Mn3O4 by appropriate adjustment of the partial pressure of SOZ. These various reactions will be described in the subsequent kinetic experiments.
Citation
APA:
(1969) Part X – October 1968 - Papers - Kinetics of the Formation of MnSO4 from MnO2, Mn2O3 and Mn3O4 and its Decomposition to Mn2O3 or Mn3O4MLA: Part X – October 1968 - Papers - Kinetics of the Formation of MnSO4 from MnO2, Mn2O3 and Mn3O4 and its Decomposition to Mn2O3 or Mn3O4. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.