Part X – October 1968 - Papers - Liquid Metals Diffusion: A Modified Shear Cell and Mercury Diffusion Measurements

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 8
- File Size:
- 628 KB
- Publication Date:
- Jan 1, 1969
Abstract
A diffusion measurement technique based on a shear cell comprised of only two segments is described. The diffusion boundary value problem for the finite capillary geometry is solved in general for any arbitrary initial concentration profile and is subsequently specialized for the modified shear cell problem. Effects of convection and mixing at the shear interface were found to be negligible. Mercury self-diffusion coefficients were determined from -25° to 252°C. These data are in good agreement with those found by Meyer. ALTHOUGH diffusion in liquid metals has been of interest for over two centuries, the need for measurement techniques of improved accuracy and precision has become increasingly apparent as additional data have been obtained and theory has become more refined. These conditions reflect the experimental difficulties inherent in liquid diffusion measurements, in which transport by other processes, such as convection, tends to mask the diffusive transport. Frequently the disagreement between several theoretical predictions is less than that found between different sets of data obtained for a system. Moreover, as has been shown by Nachtrieb,1 diffusion data are needed over much larger temperature ranges if the functional dependence on temperature is to be known. Thus, improved techniques must be devised if experimental data are to augment fundamental understanding of the liquid state and to meet technological needs. The available techniques have been discussed elsewhere.' Of these, only the capillary-reservoir, long capillary, and shear cell techniques will be discussed briefly in terms of experimental advantages and disadvantages. These methods served to establish design criteria for the modified shear cell described here. The capillary-reservoir technique of Anderson and saddington3 has been the most widely used method in recent years. The method offers experimental simplicity relative to other methods and has been employed for high-temperature measurements. Moreover, the mathematical relationship between the measured concentration ratio and the diffusion coefficient is such that smaller values of the ratio are achieved for a specified diffusion time relative to other methods. The amplified errors between the concentration ratio and the calculated diffusion coefficient are diminished at lower values of the ratio.' The method also permits multiple determination by the simultaneous use of several capillaries. Disadvantages of the capillary-reservoir method are primarily associated with the hydrodynamic ef- fects of convection and of placing the capillary in the reservoir. These effects are most pronounced in the region near the open end of the capillary and produce an ill-defined boundary condition between the capillary and the reservoir. Such effects are not amenable to experimental or mathematical correction2 (although this has been suggested4). The long-capillary method of Careri, Paoletti, et al.5-10 involves filling one half of a small capillary tube of 150 to 200 mm total length with material of one composition or radioactivity and the other half with the second part of the diffusion couple. This arrangement eliminates the adverse hydrodynamic effects associated with the capillary-reservoir technique; however, certain other experimental difficulties are encountered in this method. The more significant of these difficulties involve the melting, expansion, contraction, and solidification of the diffusion system. The dependence in some cases of the diffusion coefficient on the capillary diameter noted by Careri et a1.7 (termed the "wall effect") has been alternatively explained by Nachtriebl as a convection effect during solidification. In mutual diffusion measurements, the convection problems associated with melting and solidification are increased because of the differences in melting points and in expansion coefficients between the halves of the diffusion couple. However, the errors caused by convection effects within this method are usually less than those in the capillary-reservoir method. Furthermore, the concentration profile needed to determine concentration-dependent diffusion coefficients by the Boltzmann-Matano analysis can be obtained from this method. Of the previous attempts to use shear cells, only the cell used by Nachtrieb and Petit11,12 appears to have yielded good data. They reduced the mechanical complexity of the conventional shear cell by using a cell comprised of only four segments. Three of these segments were filled with ordinary mercury and the fourth with radioisotopic mercury in their determination of mercury self-diffusion coefficients. The average concentration (radioactivity) was determined in each segment following a period of isothermal diffusion. These concentration values were fitted to concentration profiles obtained from the Stefan-Kawalki tables, and the diffusion coefficients were evaluated. Thus, although the number of cell segments is reduced in their method, some information about the concentration profile can be obtained in terms of the Stefan-Kawalki analysis. Moreover, their cell is suitable for measurement of diffusion coefficients at elevated pressure, as they successfully demonstrated with mercury. Consideration of the design and experimental features of the methods discussed above suggested several criteria for the new cell: 1) a ''total" capillary system, as opposed to a capillary-reservoir system, should reduce adverse convection effects; 2) such a capillary system should avoid the problems en-
Citation
APA:
(1969) Part X – October 1968 - Papers - Liquid Metals Diffusion: A Modified Shear Cell and Mercury Diffusion MeasurementsMLA: Part X – October 1968 - Papers - Liquid Metals Diffusion: A Modified Shear Cell and Mercury Diffusion Measurements. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.