Part X – October 1968 - Papers - Low-Temperature Heat Capacity and High-Temperature Enthalpy of CaMg2

- Organization:
- The American Institute of Mining, Metallurgical, and Petroleum Engineers
- Pages:
- 4
- File Size:
- 234 KB
- Publication Date:
- Jan 1, 1969
Abstract
The heat capacity of CaMg2 was measured over the temperature interval, 4.8° to 287°K, by the technique of low-temperature adiabatic calorimetry. Heat content measurements were performed with a drop calorimeter over the temperature interval, 273" to 673°K. From these data the thermodynamic functions, (FT - H0)/T, ST - So, and & - Ho, were evaluated. A third-Law calculation of the standard entropy of formation of CaMg2 yields a value of -0.25 * 0.06 cal per (°K g-atom) , and the free-energy function derived from this study when combined with existing equilibria data yields a value for the standard enthalpy of formation which is in agreement with direct calorimetric enthalpy measurements. The accompanying paper' shows that the enthalpy of formation of CaMg2 has been determined with good precision by three different calorimetric techniques.'-= TWO independent determinations of the Gibbs free energy of formation of CaMg2 have also been made; both determinations were based on vapor pressure measurements, being in one case hydrogen vapor pressures over ternary Ca-Mg-H alloys4 and in the other case magnesium vapor pressures over binary Ca-Mg alloys.5 The present determination of heat capacity of CaMg2 below room temperature and of the heat content of CaMg2 above room temperature was undertaken to provide supplementary data. These data are useful in their own right but can in addition be used to evaluate an entropy of formation for CaMg2 which, because of the interrelation of free energy, enthalpy, and entropy, can be used as a check of the self-consistency of the composite of the presently available information. LOW-TEMPERATURE HEAT CAPACITY The heat capacity of CaMg2 was measured over the temperature interval 4.87° to 286.64°K in an adiabatic calorimeter. The physical details of the calorimeter and the experimental procedure for measuring the heat capacity of a specimen have been adequately described by Gerstein et a1.6 The source and purity of the calcium and magnesium are described together with the methods of sample preparation and chemical analyses in the accompanying paper.' Results of chemical analyses of the material which was used in the present investigation are shown in Table I. These analyses show that, on the basis of the published phase diagram,7 the heat capacity sample contained a slight excess of a calcium while the heat content sample contained a slight excess of magnesium. However, in both cases the excess was small, and X-ray diffraction patterns showed reflections which were without exception attributable to CaMg2. The sample which was used for heat capacity measurements weighed 69 g while the sample container and addenda weighed 132 g. The sample was in the form of annealed powder, 50 to 60 mesh, and was sealed into the sample container under 0.1 atm of helium. Copper fins inside the sample container facilitated thermal equilibrium of the powdered Sample. Time intervals of the order of 10 min were required for thermal equilibration, and such times are normal for this calorimeter regardless of the form of the sample. The observed heat capacities were corrected for the small excess of a calcium through use of the heat capacity values tabulated by Hultgren et a1.8 The corrected heat capacities are tabulated as a function of temperature in Table II. The free-energy function and the absolute entropy of CaMg2, which were calculated from the experimental heat capacity data, are listed in Table 111. A smooth curve was fitted to a plot of the experimental values of the heat capacity and in only two instances above 30°K did the plotted points deviate from the curve by more than 0.2 pct. Below 10°K the deviation of several of the points was as much as 50 pct. These large percentage deviations were attributed to the small value of the heat capacity and to the low sensitivity of the platinum resistance thermometer in this temperature range. The deviations in the region of 10°to 30°K were less than 5 pct. Although the percentage deviations of some of the low-temperature measurements are large, the actual value of these deviations is small since the magnitude of the heat capacity in that temperature range is small. The error in the value of the third-law entropy at 298.15°K was estimated to be less than 0.01 cal per (°K g-atom). A value of -0.25 ±0.06 cal per (°K g-atom) was obtained for the standard entropy of formation at 298.15°K from the relation:
Citation
APA:
(1969) Part X – October 1968 - Papers - Low-Temperature Heat Capacity and High-Temperature Enthalpy of CaMg2MLA: Part X – October 1968 - Papers - Low-Temperature Heat Capacity and High-Temperature Enthalpy of CaMg2. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1969.